
A Cognitive Serverless Framework for the Cloud-Edge Continuum

D5.4 Use Cases - Scientific Report - d
Version 1.0

12 November 2024

Abstract

COGNIT is an AI-Enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
Continuum that enables the seamless, transparent, and trustworthy integration of data
processing resources from providers and on-premises data centers in the cloud-edge
continuum, and their automatic and intelligent adaptation to optimise where and how
data is processed according to application requirements, changes in application demands
and behaviour, and the operation of the infrastructure in terms of the main environmental
sustainability metrics. This document provides an overall status of the contribution of the
Project’s software requirements towards meeting the user requirements that guide the
development of the COGNIT Framework, offers additional information about the domains
targeted by the Use Cases and the Partners involved in them, and provides an update on
the Project’s software integration process and infrastructure, on its testbed environment,
and on the progress of the software requirement verification tasks during the Third
Research & Innovation Cycle (M16-M21).

Copyright © 2024 SovereignEdge.Cognit. All rights reserved.

This project is funded by the European Union’s Horizon Europe research and innovation
programme under Grant Agreement 101092711 – SovereignEdge.Cognit

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://cognit.sovereignedge.eu/

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Deliverable Metadata

Project Title: A Cognitive Serverless Framework for the Cloud-Edge Continuum
Project Acronym: SovereignEdge.Cognit
Call: HORIZON-CL4-2022-DATA-01-02
Grant Agreement: 101092711
WP number and Title: WP5. Adaptive Serverless Framework Integration and Validation
Nature: R: Report
Dissemination Level: PU: Public
Version: 1.0
Contractual Date of Delivery: 30/09/2024
Actual Date of Delivery: 12/11/2024
Lead Author: Thomas Ohlson Timoudas (RISE)
Authors: Monowar Bhuyan (UMU), Marek Białowąs (Phoenix), Dominik Bocheński (Atende),

Malik Bouhou (CETIC), Aritz Brosa (Ikerlan), Idoia de la Iglesia (Ikerlan), Agnieszka
Frąc (Atende), Grzegorz Gil (Atende), Torsten Hallmann (SUSE), Joel Höglund
(RISE), Carlos Lopez (ACISA), Mateusz Kobak (Phoenix), Tomasz Korniluk
(Phoenix), Johan Kristiansson (RISE), Antonio Lalaguna (ACISA), Fátima Fernández
(Ikerlan), Carlos Lopez (ACISA), Marco Mancini (OpenNebula), Alberto P. Martí
(OpenNebula), Philippe Massonet (CETIC), Nikolaos Matskanis (CETIC), Daniel
Olsson (RISE), Mikel Irazola (Ikerlan), Álvaro Puente (Ikerlan), Holger Pfister
(SUSE), Tomasz Piasecki (Atende), Francesco Renzi (Nature4.0), Bruno Rodríguez
(OpenNebula), Juan José Ruiz (ACISA), Kaja Swat (Phoenix), Paul Townend (UMU),
Iván Valdés (Ikerlan), Riccardo Valentini (Nature4.0), Constantino Vázquez
(OpenNebula), Pavel Czerny (OpenNebula).

Status: Submitted

Document History

Version Issue Date Status1 Content and changes
0.1 28/10/2024 Draft Initial Draft
0.2 06/11/2024 Peer-Reviewed Reviewed Draft
1.0 12/11/2024 Submitted Final Version

Peer Review History

Version Peer Review Date Reviewed By
0.1 31/10/2024 Torsten Hallmann (SUSE)
0.1 11/11/2024 Antonio Álvarez (OpenNebula)

Summary of Changes from Previous Versions

First Version of Deliverable D5.4

1 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

Version 1.0 12 November 2024 Page 2 of 74

https://cordis.europa.eu/project/id/101092711

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Executive Summary

Deliverable D5.4, released at the end of the Third Research & Innovation Cycle (M21), is
the fourth version of the Use Cases Scientific Report in WP5 ”Adaptive Serverless
Framework Integration and Validation”. It offers a summary of the work done in this cycle
and for the demonstration of the second version of the COGNIT Framework and its
integration with the Use Cases to be demonstrated in the testbed environment for the
project. Also, it provides information on the progress of the software requirements
verification tasks per component

In connection with the main components of the COGNIT Architecture (i.e. Device Client,,
COGNIT Frontend, Edge Cluster, Cloud-Edge Manager, and AI-Enabled Orchestrator), the
Project has delivered progress across different Software Requirements linked to a set of
functionalities for the Use Cases that enables their own research and development
activities and helps in the integration of their devices with the COGNIT Framework.

Apart from this document (Deliverable D5.4) and the Project's global overview provided
through Deliverable D2.4, specific research and development activities performed in WP3
“Distributed FaaS Model for Edge Application Development” (related to the Device Client,
the COGNIT Frontend, the Edge Cluster, and the Secure and Trusted Execution of
Computing Environments) are described in detail in reports D3.3 “COGNIT FaaS Model -
Scientific Report - c” and D3.8 “COGNIT FaaS Model - Software Source - c”, whereas those
performed in WP4 “AI-Enabled Distributed Serverless Platform and Workload
Orchestration” (related to the Cloud-Edge Manager, the AI-Enabled Orchestrator, and the
Energy Efficiency Optimization in the Multi-Provider Cloud-Edge Continuum) are described
in reports D4.3 “COGNIT Serverless Platform - Scientific Report - c” and D4.8 “COGNIT
Serverless Platform - Software Source - c”.

The information in this report will be updated with incremental releases at the end of each
remaining research and innovation cycle (i.e. M27 and M33).

Version 1.0 12 November 2024 Page 3 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Table of Contents

Abbreviations and Acronyms 5

1. Introduction 7

PART I. Validation Use Cases 8

2. Overall Status 8

3. Use Case #1: Smart Cities 10

3.1 Use Case Scenario and Architecture 10

3.2 Summary of developments during cycle M16-M21 11

3.3 Integration with the COGNIT Framework 15

4. Use Case #2: Wildfire Detection 24

4.1 Use Case Scenario and Architecture 24

4.2 Summary of developments during cycle M16-M21 26

4.3 Integration with the COGNIT Framework 26

5. Use Case #3: Energy 33

5.1 Use Case Scenario and Architecture 33

5.2 Summary of developments during cycle M16-M21 34

5.3 Integration with the COGNIT Framework 40

6. Use Case #4: Cybersecurity 46

6.1 Use Case Scenario and Architecture 46

6.2 Summary of developments during cycle M16-M21 46

6.3 Integration with the COGNIT Framework 50

PART II. Software Integration and Verification 56

7. Software Integration Process and Infrastructure 56

7.1 OpenNebula Biscuit Auth Extension 56

7.2 Cross-Site Live Migration Configuration 56

7.3 OpsForge KIWI Integration 58

7.4 Second Version of the COGNIT Software Stack 60

8. Testbed Environment 63

8.1 Central testbed setup 63

8.2 Upgraded hardware 63

8.3 Network adaptations to support the new architecture 63

8.4 New components deployed 63

9. Software Requirements Verification 65

9.1 Device Client 65

9.2 COGNIT Frontend 67

9.3 Edge Cluster 68

9.4 Cloud-Edge Manager 68

9.5 AI-Enabled Orchestrator 71

9.6 Secure and Trusted Execution of Computing Environments 72

10. Conclusions and Next Steps 74

Version 1.0 12 November 2024 Page 4 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Abbreviations and Acronyms

5G Fifth Generation Mobile Network

AI Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Services

CCAM Cooperative, Connected and Automated Mobility

CC-CV Current and Constant Voltage

DaaS Data as a Service

DCC Device Client in C

DDPG Deep Deterministic Policy Gradient

DSRC Dedicated Short Range Communications

DSO Distribution System Operator

EC2 (Amazon) Elastic Compute Cloud

EN European Norms

ENS Esquema Nacional de Seguridad (Spanish National Security Schema)

ESS Energy Storage System

ETSI European Telecommunications Standards Institute

EV Electric Vehicle

FaaS Function as a Service

FAQ Frequently Asked Questions

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

HEMS Home Energy Management System

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation and Air Conditioning

ID Identifier

IP Internet Protocol

IPv6 Internet Protocol​​version 6

ITS Intelligent Transport System

kW kiloWatt(s)

LTE Long-Term Evolution

MAPEM MAP (Topology) Extended Message

ML Machine Learning

M-Hub Mobility Hub (advanced TLC)

Version 1.0 12 November 2024 Page 5 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

NB-IoT NarrowBand - Internet of Things

OBU On Board Unit

OCPP Open Charge Point Protocol

OS Operating System

PCI Peripheral Component Interconnect

PV Photovoltaic

QA Quality Assurance

QoS Quality of Service

RES Renewable Energy Source

REST Representational State Transfer

RL Reinforcement Learning

RSU Road Side Unit

RTOS Real-Time Operating System

SAE Society of Automotive Engineers

SEM Smart Energy Meter

SPATEM Signal Phase And Timing Extended Message

SREM Signal Request Extended Message

SSEM Signal request Status Extended Message

SSH Secure Shell

SSL Secure Sockets Layer

SUMO Simulation of Urban Mobility2

TCC Traffic Control Center

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TLC Traffic Light Controller

TS Technology Specifications

TSP Traffic/Transit Signal Priority

TTC TreeTalker Cyber

V2X Vehicle to Everything communication technology

VM Virtual Machine

VPN Virtual Private Network

2 An open source, highly portable, microscopic and continuous multi-modal traffic simulation package designed to handle
large networks: https://eclipse.dev/sumo/

Version 1.0 12 November 2024 Page 6 of 74

https://eclipse.dev/sumo/

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

1. Introduction

This is the fourth version of the Use Cases Scientific Report. The initial version of the Use
Cases Scientific Report (Deliverable D5.1), released in M3, provided an initial collection of
user requirements, a description of each of the Use Cases—including an initial architecture
design and a plan for the demonstration and validation to take place in Tasks T5.3, T5.4,
T5.5, T5.6—and an update of the COGNIT Testbed environment.

Both the second and the third versions of the report (Deliverables D5.2 and D5.3), released
in M9 and M15, provided summaries of the overall status of the contribution of the
Project’s software requirements towards meeting the user requirements that guide the
development of the COGNIT Framework at the end of the First and Second Research &
Innovation Cycle (M4-M9 and M10-M15). They also provided additional information about
the domains targeted by the Use Cases and the Partners involved in them, listing new user
requirements identified during the cycle, and offering an update on the Project’s software
integration process and infrastructure, on its testbed environment, and on the progress of
the software requirement verification tasks per component.

Since the previous version of the report (Deliverable D5.3), there have been changes to the
COGNIT architecture, motivated by the requirements of the use cases. This second version
of the COGNIT Framework is described in Deliverable D2.4. During this Research &
Innovation Cycle (M16-M21), the project partners have worked together with the use cases
to transition to this new architecture, which, from the perspectives of the use cases, have
required some modifications in how the Device Client interacts with the COGNIT
Framework.

D5.4 gives an incremental update on the progress. The document follows the same
structure as in previous versions. D5.4 is composed of an introductory section and nine
additional sections organised in two main blocks of content:

● Part I focuses on tracking the overall status (Section 2) and progress of the
research and development work performed for each of the Use Cases, and their
current status, with a dedicated section per Use Case (Sections 3 to 6).

● Part II focuses on the Project’s software integration process and infrastructure
(Section 7), on the evolution of the testbed environment (Section 8), and on the
software requirements verification tasks carried out per component (Section 9).

The document ends with a conclusion section (Section 10).

Version 1.0 12 November 2024 Page 7 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

PART I. Validation Use Cases

2. Overall Status

The table below shows the current status of each Software Requirement towards meeting its associated global and user requirements,
following a simple colour code: for activities that have not started yet, for activities in progress, and for completed activities:

Version 1.0 12 November 2024 Page 8 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Table 2.1. Current status of each Software Requirement towards meeting its associated global/user requirements.

Version 1.0 12 November 2024 Page 9 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

3. Use Case #1: Smart Cities

This use case addresses the use of the COGNIT Framework in critical infrastructures within
the smart city. Mobility-Hub (henceforth M-Hub) is a new generation of traffic light
controllers designed by ACISA, which incorporates edge computing capabilities, aiming to
accelerate the adoption of Cooperative, Connected and Automated Mobility (CCAM)
services in urban areas, while providing a common edge infrastructure to other
mobility-related services.

Considering that traffic infrastructures are owned by the city councils, enabling an open,
standard-based far-edge platform will allow cities to deploy robust mobility and IoT
services on top of existing traffic infrastructure. Therefore stakeholders such as Smart
City, Mobility, Police, or emergency services departments inside city councils, could
become beneficiaries and users of such infrastructure, without the need to deploy
additional systems or equipment in the streets or vehicles. The objectives of the Smart
City use case are:

● Implement a solution for a Traffic/Transit Signal Priority (TSP) service for public3

transport and emergency vehicles relying on a continuum infrastructure.
● The new approach must optimise delays at intersections, and clear the junctions for

emergency vehicles to reduce the probability of accidents, through direct
interaction between the V2X On-Board Unit (OBU), the Road Side Unit (RSU) and
the integration with the M-Hub.

● The serverless platform COGNIT enables at the edge, to design new digitalisation
services optimising distributed on-prem resources.

● Seamlessly integrate far-edge clients (M-Hubs) with on-prem edge and cloud
infrastructure, by means of the function-as-a-services (FaaS) paradigm.

3.1 Use Case Scenario and Architecture

The use case scenario and architecture are described in more detail in the previous
deliverable “D5.3 Use Cases - Scientific Report, section 3.1: Current architecture and
scenario”. A summary is provided below.

To demonstrate the capabilities of edge computing for improving the efficiency of public
transportation and emergency services, this use case focuses on public bus and emergency
vehicle prioritisation. A key element in this is the traffic signal priority mechanism, which
allows special vehicles to get priority over other vehicles when approaching an
intersection. This is achieved by modifying Traffic Light Controller (TLC) phase timings
when necessary, either by extending the green phase, reducing the red one or even
forcing a new phase (in the case of emergency vehicles).

Nowadays, when a priority is requested by any of those special vehicles, the central traffic
management system decides if it should be approved or not, typically based on bus
schedules. Once priority is granted, the objective is that the vehicle encounters a green
light upon reaching the TLC. Therefore, the vehicle’s arrival time must be calculated in

3 https://www.emtracsystems.com/wp-content/uploads/2021/01/TSPHandbook10-20-05.pdf

Version 1.0 12 November 2024 Page 10 of 74

https://www.emtracsystems.com/wp-content/uploads/2021/01/TSPHandbook10-20-05.pdf

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

real-time, taking into account factors such as its position, speed, intersection layout, traffic
status, etc.

The Smart City use case will explore the use of V2X technology for public bus and
emergency vehicle prioritisation at urban road intersections. In this scenario, a vehicle
equipped with a V2X OBU sends a V2X priority request message, which is intercepted by
an RSU, which then forwards it to its nearby M-Hub, installed at the intersection.

3.2 Summary of developments during cycle M16-M21

During this cycle, we have mainly researched how to align the messages between the
devices and the edge with standards, its content and the equipment configuration as
described in Figure 3.4 and Section 3.3. Figure 3.7 in Section 3.3 illustrates how priority
functionality is executed by serverless functions provisioned through the COGNIT
Framework.

Request patterns

According to the samples obtained from our devices on the field, this is a typical pattern
on a business day at a specific junction:

Figure 3.1. A snapshot of the priority request pattern obtained in the test bed on a typical day.

The data is accumulated in 10-minute periods. The global number of requests will depend
on the total number of buses and junctions involved, and it will depend on the field
deployment, but this graph gives us an order of magnitude of the volume of FaaS requests
to be expected.

Digital Twin of urban road intersections

Every intersection within a city varies in terms of its topology, traffic model, M-Hub
program, and the specific manoeuvres that a vehicle may request priority for, resulting in a
high degree of complexity. Figure 3.2 provides a few examples extracted from UNE/CEN

Version 1.0 12 November 2024 Page 11 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

ISO 19091 , but there will be additional unique scenarios. Each intersection needs to be4

modelled with its particular differences in terms of topology, traffic flow, traffic demand,
bus stop location, crosswalk, TLC programs, bus stops, etc.

Figure 3.2. Examples of potential intersection scenarios in Transit Signal Priority (TSP). (Source
UNE-CEN ISO/TS 19091)

Each intersection has its counterpart digital representation, a.k.a. Digital Shadow, holding
updated historical data about its layout, current traffic status, subsystems status and
alarms (M-Hub, detectors, others), etc. By incorporating a feedback actuation based on the
traffic simulation results, the Digital Shadow evolves into a Digital Twin, which will act over
the intersection traffic lights to grant or deny the priority based not only on current traffic
status, but also on its simulated forecast predictions.

In Saturno we have a Digital Shadow of each intersection we manage, with detailed
information, but we haven't yet added its dynamic traffic model to be evaluated on a
simulation engine. During this period we made a preliminary analysis of the intersections
traffic flow in the test bed, and selected two of them to work on during the next phases,
as shown in Figure 3.11 and Figure 3.12.

Figure 3.3. Example of the Digital Shadow of Granada’s intersection in Saturno.

4 https://www.iso.org/standard/69897.html

Version 1.0 12 November 2024 Page 12 of 74

https://www.iso.org/standard/69897.html

Unset

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Integration of standards

A bus requests priority by sending a standardised V2X SREMmessage after receiving
intersection data through SPATEM and MAPEM V2X messages, as defined in SAE J27355

Message Set Dictionary. The SREMmessage includes essential details such as the bus ID,
ingress/egress lanes and, when available, bus delay information. The M-Hub offloads
additional verifications to the serverless COGNIT Framework, which possesses all the
necessary data to perform traffic simulations, and approve or deny the priority request.

We have included a sample of a V2X message sent fromM-Hub to Saturno below:

{
"junctionCode": "****",
"busLine": "**",
"busNumber": "*****",
"delayLevel": "none",
"minDelayLevel": "none",
"dtIngress": "2024-10-03T17:53:31.530Z",
"dtTransit": "2024-10-03T17:54:50.530Z",
"dtEgress": "2024-10-03T17:55:07.530Z",
"laneCodeFrom": 3,
"laneCodeTo": 4,
"priorityState": "done",
"demandCode": 1,
"priorityType": "minimum",
"stoppedTime": 26,
"priorityLevel": "low",
"granted": true,
"expectedStop": false,
"comment": "Operation done"

}

The RSUs can send information about the traffic light groups and the topology of the
intersection to the M-Hub system. This information will be used in the digital twin
simulations that will run on COGNIT. To integrate the RSU with an edge node, the use case
has implemented a communication interface using a REST API and websocket.

Figure 3.4 shows a sample of the equipment installed, consisting of M-Hubs and V2X RSUs
on each intersection, to communicate with any of the 18 buses equipped with a V2X On
Board Unit.

5 https://www.sae.org/standards/content/j2735_202007/

Version 1.0 12 November 2024 Page 13 of 74

https://www.sae.org/standards/content/j2735_202007/

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Figure 3.4. Installation of V2X On Board Units (left), M-Hub (center),
and RSU (right) in the city of Granada.

Prioritisation Algorithm​

The objective of the pilot is to move the priority request decision closer to the requesting
vehicle in the far edge premises of a customer. M-Hub Silver, as a client of the COGNIT
Platform will make a remote FaaS request to M-Hub Gold installed on the far edge, to
trigger the computational processes needed to grant or deny priority pass to the vehicle.

The main goal of the system is to avoid the stopping time of each bus in the traffic signal,
thus the travel time crossing the junction will be reduced.​To measure the results, each
priority operation is monitored, collecting data in two scenarios: “With” and “without”
priority system enabled.​In this project, the priority system will utilise the more advanced
digital twin simulations enabled by COGNIT.

The graph shows that the average time crossing the bus is lower if the current priority
system is enabled (green):

Figure 3.5. Comparison of average crossing times with and without priority system.

Version 1.0 12 November 2024 Page 14 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

A challenge for this prioritisation schema is that the arrival time for the bus has some
uncertainties. To reach the objective, the traffic light controller needs to know when the
bus will arrive at the junction, in order to modify the green or red light timings. ​One of the
main problems in achieving that, is the difficulty of determining the precise moment when
the bus will arrive, especially if there are bus stops along the ingress path. These stops
introduce a high level of indetermination in the estimated time to approach.

The following graph shows the average arrival time compared with the standard deviation
of the different samples, per junction:

Figure 3.6. Average arrival time compared with the standard deviation

3.3 Integration with the COGNIT Framework

The following diagram in Figure 3.7 illustrates the integration of the use case architecture
with the COGNIT Framework. In this architecture, the priority evaluation functionality is
executed by serverless functions provisioned through the COGNIT Framework and
deployed on edge cluster nodes, which are installed at the customer's far-edge premises.

Version 1.0 12 November 2024 Page 15 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Figure 3.7.Overview of elements involved in the Smart City use case

Application Structure

Upon receiving a priority request from an authorised vehicle, the M-Hub may initiate a
function call to the COGNIT FaaS service including additional contextual information to
execute on-demand traffic simulation using SUMO. This is some heavyweight functionality6

that wouldn’t make sense to deploy on the M-Hub Silver devices and will be leveraged
using the remote FaaS to calculate some complex simulations and obtain KPIs to make
decisions about priorities. It is a function to manage a priority and needs to be executed
quickly. This requires setting up the Serverless Runtime image with the libraries and

6 Simulation of Urban Mobility, an open source, highly portable, microscopic and continuous multi-modal traffic simulation
package designed to handle large networks: https://eclipse.dev/sumo/

Version 1.0 12 November 2024 Page 16 of 74

https://eclipse.dev/sumo/

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

dependencies for the simulation, the models of the junctions (this is a temporary solution
until the DaaS component is in place, expected in the forthcoming research and innovation
cycle), and some scripts to process the outcomes, so that these elements are already
available when the remote call is made, because doing this on demand for a request would
be really inefficient. The context information necessary to evaluate the priority requested
may be collected ideally by means of the DaaS service in the COGNIT Framework, although
it currently resides as part of the intersection Digital Twin in Saturno. In future releases,
the model might be a target for updates with recent traffic data stored in the DaaS
component.

Once the priority analysis is done and communicated back to the M-Hub, it generates a
response to be transmitted to the requesting vehicle. This response takes the form of
another standardised V2X message known as the Signal Request Status Extended
Message (SSEM), informing whether the priority has been conceded or rejected.

Our use case is focused on leveraging the capabilities of remote execution of complex
simulations on the COGNIT Framework. This will provide our edge systems with valuable
information to make decisions about how to deal with specific traffic situations.

Response time is an important issue because the M-Hub will receive a priority request for
an upcoming bus, and there is a limited time to make a decision. Our initial requirement for
response time would be 1 second, although this will need to be confirmed through field
testing.

With regard to response time for FaaS execution, another concern is to avoid as much as
possible the “cold start” problem, since that would pose a risk to the response time our
case needs. This is a clear requirement from this use case to avoid as far as possible any
cold starts for our FaaS requests.

Being able to choose which infrastructure to run the serverless FaaS platform on could be
a requirement for some cities. Smaller locations with small IT resources will probably
prefer a deployment at managed service providers or public clouds. Bigger cities with
more IT resources and knowledge and probably with more strict regulations, or
compliance, would prefer or need a deployment on-premise. For the scope of this pilot,
the preferred locations to deploy the edge nodes are Barcelona and Granada, Spain.

Being able to seamlessly select the specific location (i.e. Edge nodes) where the FaaS will
be run is a clear advantage of using the COGNIT Framework instead of other more
ubiquitous cloud approaches from cloud services vendors. This will imply the definition of
policies specifying if there is a requirement about where the FaaS can be run, or where the
data in DaaS can be stored.

With regard to the data input for the SUMO simulations, currently it has been deployed in
our Serverless Runtime image flavour, but we expect to manage it via the DaaS as soon as
this service is available within the COGNIT Framework.

The hypothesis right now is that the application will require an average response time of
less than 1 second, i.e., the time between the M-Hub performing a FaaS request, and an
answer is received (does not include simulation time).

Version 1.0 12 November 2024 Page 17 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

A typical medium city may have 200 intersections on average, we may consider a maximum
rate of 10 priority requests per hour per intersection (see Figure 3.1 as reference), that is
an upper limit of 2000 requests per hour in an average medium city. We may consider an
upper limit of 20 concurrent requests by the different M-Hub clients.

COGNIT will help ensure Serverless Runtimes will be available to run SUMO simulations
24/7.

Version 1.0 12 November 2024 Page 18 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Figure 3.8. Overview of the prioritisation process, in which the M-Hubs makes FaaS requests to the Edge Cluster Frontend.

Version 1.0 12 November 2024 Page 19 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Figure 3.9. Detail of the process in M-Hub and FaaS request.

Vehicle communication is facilitated by an OBU equipped with V2X capabilities and a
Global Navigation Satellite System (GNSS) receiver. The OBU communicates via radio with
V2X (RSUs) installed at every intersection, and these RSUs are connected to the M-Hub
Silver.

Relevant Key Features of COGNIT

The following features of the COGNIT Framework are of particular relevance to this use
case:

● Enable seamless deployment of FaaS and DaaS on-premises and specific nodes​.
● Locality deployment, that will reduce the overall latency of the solution.
● Easy management of applications deployed over distributed premises from

different customers.
● Safeguarding confidentiality and locality of customer data even when a

multi-tenancy approach is not allowed by them.
● Policies to determine whether a function needs to be executed in specific

servers/”zones”/”areas” to comply with stakeholders' compliance requirements.
● Service availability across the cloud-edge continuum.

Validation Scenario

ACISA is the current traffic management contractor in the city of Granada, and is currently
equipping 38 intersections with its new M-hub and V2X systems to provide public bus

Version 1.0 12 November 2024 Page 20 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

prioritisation for the bus line 4 of the city, consisting of 18 buses, as can be seen in Figure
3.10. The current status is that:

● Every intersection is configured in SATURNO, following the V2X standard.​
● The basic configuration includes all incoming and outcoming lanes and the allowed

movements between them.​
● This configuration is automatically sent to the RSU through the Mobility Hub Edge.​
● This information will be available to all authorised V2X vehicles.​

Figure 3.10. Granada’s line 4 map shows the intersections covered with M-Hub and V2X equipment.
In red, the selected intersections are to be used as testbed on use case 1.

At this stage we have been testing the integration of the M-Hub with the V2X devices, and
applying the algorithms needed to provide priority service in the following context:

● Line 4, consisting of a maximum of 18 vehicles, all with an OBU installed.​
● Long route, with a total of 38 traffic light controllers including an RSU and an EDGE

internal CPU.
● Bus delay data of each bus are updated in SATURNO every 5 minutes.​
● Two of those intersections in line 4, have been selected to be used as testbed for

the COGNIT Project (marked in red in Figure 3.10, and in more detail in Figure 3.11
and Figure 3.12)

Version 1.0 12 November 2024 Page 21 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

● The current priority algorithm will be compared against the more sophisticated one
to be developed leveraging the FaaS functionality provided by the COGNIT
Framework, to trigger traffic simulations based on the dynamic model provided by
its digital twin.

Figure 3.11. Detail of intersections used as use case 1 test bed.

Figure 3.12. Granada’s intersection 1134 and 1095 as represented in Saturno.

Version 1.0 12 November 2024 Page 22 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Use Case Testbed

The use case has set up a testbed in Granada for testing the integration of the real device
on the field, with V2X sensors to receive buses or emergency vehicle detections, and
running a simplistic algorithm to make decisions about priority. This algorithm will be
replaced with a more elaborated one using COGNIT FaaS requests to run simulations in the
upcoming cycles.

Furthermore, the following hardware has been acquired and is being deployed in
Barcelona to provide local processing power to the pilot:

1x Supermicro Twin rackable SuperServer SYS-120TP-DTTR Chassis 2U

Representing two nodes, each one with these characteristics:

● 2 x CPU Intel Xeon Silver 4314 16C/32T 2.4GHz.
● 128GB RAM: 8 modules x16GB DDR4-3200.
● 2 x Discs SSD de 960GB <2DWPD.
● 2 x Ports 10Gb Base-T @motherboard.
● 2 x Ports 1Gb Base-T @ an additional board.

1x Rackable server 2U supermicro

● 2 x CPUs Intel Xeon Silver ICX 4314 16C/32T 2.4GHz.
● 128GB RAM: 8 modules x 16GB DDR4-3200.
● 2 x Discs SSD de 480GB SATA Intel D3 S4520 < 2DWPD.
● 2 x Ports 10Gb Base-T @motherboard.
● NVIDIA QuadroRTXA5000 24GB GDDR6.

Figure 3.13 shows the elements that have been deployed in Granada for the pilot project.

Figure 3.13. Devices deployed on the pilot on Granada.

Version 1.0 12 November 2024 Page 23 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

4. Use Case #2: Wildfire Detection

The wildfire detection use case explores the use of IoT technologies for fire detection in
forests. The early detection of wildfires is of utmost importance to obtain timely
intervention from civil protection and firefighters to minimise damage in terms of forestry
resources and human lives. However, developing and deploying a reliable sensor network
in the forest is challenging because of strict power constraints and the lack of strong
connectivity, as well as the cost of maintenance in remote areas. Furthermore, a false
alarm resulting in unnecessary intervention leads to an increase in costs.

The use of the COGNIT Framework can help offload power-consuming tasks and efficiently
implement reliable algorithms for the verification of flame presence, thereby reducing the
overall device power consumption. Moreover, it can improve the integration and
management of edge and cloud resources, leading to a more reliable network even during
challenging events such as fires.

4.1 Use Case Scenario and Architecture

The use case scenario and architecture are described in more detail in the previous
deliverable “D5.3 Use Cases - Scientific Report - c”, within section 4.1 “Current architecture
and scenario”. For convenience a summary is provided below.

The devices designed for early detection of wildfires are equipped with multiple sensors
related to fire presence and emissions. The relevant parameters are:

● Carbon dioxide concentration in air (ppm).
● Ozone concentration in air (ppm).
● Particulate matter PM10, PM2.5, PM1 (µg/m3).
● Air temperature (°C).
● Air relative humidity (%).
● UV radiation to detect UV emissions from flames at a distance up to 200 m.
● Camera images.
● Geographic coordinates hardcoded in the device.

Sensors can operate in the default mode or high-alert mode. In the default mode, data
from all sensors except the camera are provided every hour and saved in a database after a
simple data processing step. The collected data can be utilised for various applications,
including fire risk prediction and monitoring of the overall status of the forest. In
high-alert mode, the sensor turns on the camera and transmits data more frequently. This
high-alert mode is explained in more detail in Section 4.3 below.

Figure 4.1 below shows an example of a possible wildfire prevention network. In forests,
Internet connections can be unavailable or unreliable. If the area is well covered by a public
LTE network, an NB-IoT connection can be used by the devices; otherwise, one possible
solution for providing connectivity to the device is a private LTE network. The target
market for TreeTalker Cyber Fires comprises public institutions seeking a digital solution to
facilitate forest management and preservation; in addition to providing the devices with a
reliable and fast connection for the image transfer and supporting fire control efforts, a

Version 1.0 12 November 2024 Page 24 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

private LTE network could benefit them in case of emergencies such as finding missing
people in the forest.

Figure 4.1. Example of a possible implementation of the wildfire early detection network

A private LTE network also increases the reliability of the entire network in case of weak
Internet signals. During a fire, the signal strength could decrease due to interferences or
an increase in data transferred, but also as a result of fire damage to the infrastructure
itself. If the connection to the public cloud is severed, a private LTE connection will keep
the device network functional.

For reliability reasons, some edge nodes could be deployed at strategic points to allow
data analysis at the edge. One of these edge nodes could be deployed in the local office of
the forestry corps, while others could be added depending on the forest surface and
structure. Edge nodes can be equipped with satellite connections to allow information to
be sent even when a public LTE network is not available.

The described configuration not only increases the overall reliability of the system, but the
possibility of performing data processing locally also decreases the application response
time and the bandwidth required by the system from the public network, particularly
during a wildfire in remote areas where network resources are already scarce.

The reduction in the amount of information to transfer is especially beneficial in the case
of using satellite connections, resulting in a reduction in transfer time and costs. The
amount of edge nodes’ resources to deploy depends on the network size, but deploying
10% of the resources that are required when all the devices are in high-alert mode is
suggested. Increasing the hardware resources and the number of edge nodes improves
the performance of the network, but also increases the costs; moreover, the edge
resources are under-exploited during normal operation in the default mode. The COGNIT
Platform will help manage the compute resources and offloading requests of the
described device network, maximising its effectiveness and timely providing resources for
image recognition, where and when needed, reducing the overall costs.

Version 1.0 12 November 2024 Page 25 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

4.2 Summary of developments during cycle M16-M21

During the M10-M15 cycle, a suitable image recognition algorithm was found and
offloaded to the COGNIT Framework using a Python program.

During the M16-M21 cycle, efforts have been focused on developing virtual simulations of
the network to test COGNIT behaviour. One statistical simulation and one spatial
simulation were developed as expected; the two models will be further improved and will
be used for the validation of the wildfire use case.

Moreover, during this cycle, a COGNIT edge node was set up in Nature 4.0 headquarters
and connected to the main testbed.

Finally, tests have been performed on the TreeTalker Fire platform. Integration with
sim7022, an upgraded version of the previous NB-IoT module, was successfully tested by
sending POST requests to a remote server. The acquisition of the image from the OV2640
camera by esp32 has been tested, as well as the possibility of importing and analysing the
acquired images using Python. The C version of the COGNIT client has been selected as the
preferred solution for microcontrollers because it requires fewer resources and is faster
than MicroPython. The client will be tested in the following cycles.

In the upcoming cycle, the shared use-case-2 GitHub folder will be updated with the
complete versions of the two simulation software applications developed during the
M16-M21 cycle. The image recognition function will be further improved, including the
adjustments needed to work with the new COGNIT Frontend.

Further details of the improvements done during the cycle are described in the following
sections.

4.3 Integration with the COGNIT Framework

COGNIT is a key component for the management of the wildfire prevention network,
offering the possibility of managing and optimising local and remote resources to obtain
the best results possible under the provided constraints. The devices will be mainly
located in remote areas; therefore, it is fundamental to spare as much energy as possible
to reduce the routine maintenance required. The possibility of offloading data analysis is
valuable because it allows the device to save more energy for data collection. Moreover,
the devices will be in default mode most of the time, characterised by low offloading
frequency and low hardware requirements, while during the high-alert mode, both
hardware requirements and the offloading frequency drastically increase. However, the
activation of the high-alert mode is rare; thus, the use of FaaS reduces costs and helps
avoid wasting computational resources. The priorities of the two modes are different,
while the default mode can use low-cost, low-carbon footprint machines to elaborate and
store the data remotely, the high-alert mode requires more computational resources and a
certain latency control to guarantee a certain level of service during emergencies. COGNIT
can help manage these two modes and seamlessly switch between them.

Version 1.0 12 November 2024 Page 26 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

The demonstration of the COGNIT implementation in the UC2 scenario is divided into two
parts: a virtual sensor network and the deployment of the COGNIT client in an actual
device.

It is impossible to test the reaction of an entire sensor network to a fire in a physical
environment because of safety concerns, logistical limitations, and the scale required for a
realistic physical test. Therefore, for scale-related demonstrations, a virtual simulation of
the network is preferred.

On the other hand, the development of improved versions of the sensor devices and the
deployment of the COGNIT client on them will be used to test the interaction between
real devices and the framework and to demonstrate the use case feasibility. Depending on
the progress of the development, a real network might be deployed in the field by the end
of the project.

A server has been bought to test and demonstrate the integration of an on-premise
resource to the testbed and their interaction, as well as for future tests requiring
on-premise resources.

Application structure

The UC2 reference scenario consists of the following elements:

● The sensor devices.
● One or more edge nodes.
● One or more remote servers.
● The UC2 Serverless Runtime image.
● The image recognition function and the default mode function.

The devices scan their surroundings every fifteen minutes to assess the presence of
flames. If an indication of a flame is detected, the device enters high-alert mode and sends
a wake-up signal to nearby devices. In high-alert mode, the device turns on the camera and
offloads an image recognition function to the COGNIT Platform every minute to monitor
the situation. If no fire is detected by the image recognition algorithm after fifteen
attempts, the device returns to default mode. A device that receives a wake-up signal
enters high-alert mode; however, the wake-up signal is only propagated further by the
device if the presence of a flame is confirmed by the image recognition algorithms to avoid
wasting resources in the case of false alarms. This is illustrated in Figure 4.2 below.

Version 1.0 12 November 2024 Page 27 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Figure 4.2. Schematisation of wildfire use case scenario

In the final release, the image recognition function and default mode function will be
cached using the DaaS functionality of COGNIT currently under implementation. The
functions will be retrieved by the UC2 Serverless Runtime when they must be executed on
the data sent by the devices. The functions are written in Python while the device will
provide its arguments using the C device client. COGNIT will run on private networks of
civil protection organisations due to the sensitivity of the data and for security reasons
and will manage their private servers and edge node resources. The requirements from a
device will depend on which mode it is operating in. Data sent in default mode do not have
priority or response time constraints; therefore, in the default mode the requirement for
the COGNIT AI-Enabled Orchestrator is to use green or low-carbon footprint resources for
the task. However, in the high-alert mode, there is a maximum latency requirement that
depends on the distance from the device to areas with a confirmed fire. The AI-Enabled
Orchestrator should prioritise using edge computing resources on premises, and prioritise
processing at the edge of requests from the devices nearer to the fire. In case the

Version 1.0 12 November 2024 Page 28 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

compute resources on premises are insufficient, external servers (e.g., public cloud
resources) could be used to to process lower-priority requests. The purpose is to decrease
the latency for the devices with the most relevant information and to use the edge
resources to avoid overloading the public network during an already critical situation. The
use of edge nodes allows the maintenance of the partial functionality of the system, even
if the connection with the Internet is cut off.

Relevant Key Features of COGNIT

COGNIT provides multiple features for adapting to user needs and requirements. From the
UC2 perspective described in the previous paragraphs, the most interesting COGNIT
features are:

● Scalability: The computational resources required by the network during the
default mode are very low, as are the number of FaaS requests, while they
dramatically increase during the high-alert mode. The scalability of the system and
the possibility of responding to a sudden peak of requests are crucial in this
application, and it is the main challenge that COGNIT should face in UC2. Fires are
sudden and unpredictable; nevertheless, the framework should guarantee service
when resources are required.

● Forecasting: Even if the occurrence of fires is unpredictable, the pattern of
offloading requests during a fire event is progressive. A specific feature of COGNIT
that the UC2 can benefit from is the possibility to run wildfire simulations to train
its AI-Enabled Orchestrator to improve its performance during these events.

● Integration: In contrast to other FaaS solutions, the possibility of installing the
COGNIT Framework on-premise and using owned resources or resources under the
control of the civil protection organisations is very important since real-time data
on wildfires are considered sensitive information.

● C client: IoT devices are implemented for real-time monitoring applications in all
fields. The main programming language for microcontrollers is C++ because of its
efficiency and performance even in devices with tight memory constraints. COGNIT
makes available its FaaS solution to microcontrollers through its C client offering
new possibilities to IoT devices, TreeTalker Cyber Fire included, in particular when
combined with its caching function feature.

● Caching functions: The option to cache functions as part of DaaS features is also of
primary interest for UC2. COGNIT Serverless Runtimes are expected to run Python
code, which can be cached and used with the function arguments sent by the C
client to provide the response. This feature makes Python functions available to
C-programmed microcontrollers that would not be able to run the function itself
due to limited resources and energy constraints. TreeTalker Cyber fire will fully take
advantage of this feature running the image recognition algorithm in TensorFlow.

● Efficiency: The possibility of choosing options such as minimum power
consumption or minimum carbon footprint is a valuable feature during the default
mode, and it is a great feature in general for all applications that do not have strict
latency constraints.

● Control over latency: a wildfire can ignite within minutes and propagate at speeds
of up to 20 km/h (5 m/s). The faster the response, the lesser the damage. UC2 can

Version 1.0 12 November 2024 Page 29 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

definitely use the low-latency feature of COGNIT in a fast-changing scenario, such
as wildfires, to reduce the impact of the event.

Validation Scenario

This use case will demonstrate offloading of the image recognition algorithms from the
TreeTalker Cyber (TTC) Fire and how COGNIT manages sudden peaks of requests.

The C function and its deployment on the TTC-fire will be tested on actual devices to
demonstrate the possibility of using COGNIT on relevant target devices, using the C client
implementation and the caching functions feature of the DaaS service.

The test performed on real devices will be scaled up using virtual simulations of wildfires
to test the scalability, latency, forecasting features and integration with on-premise
resources of the COGNIT Framework. The utilisation of virtual simulations enables the
evaluation of system behaviour across multiple scenarios with minimal cost. The
simulation could also be useful for potential customers and for studying sensor network
configuration performance in advance.

Currently, two simulations are in the final stage of development: the statistical simulation
and the spatial simulation. Both allow the user to select the number of devices involved in
the simulations and modify the FaaS request frequency for the default and high-alert
modes. The standard simulation settings are as follows:

● 1000 TreeTalker Cyber Fire.
● 1 hour FaaS request frequency during the default mode.
● 15 minutes scanning frequency for wildfire detection.
● 1 minute FaaS request frequency during the high alert mode.

The sensor distribution and trigger differ between the two simulations.

The function offloaded by the simulated devices will be the image recognition function for
fire detection, which was tested on a COGNIT Serverless Runtime during the previous
cycle.

Figure 4.3. Graphical example of the statistical model. Each area represented by a square contains
one sensor. The square becomes yellow when all the sensors in the area are activated. The three

images show the progression of the model until all the 94 deployed sensors are active.

Version 1.0 12 November 2024 Page 30 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

The statistical simulation consists of a grid that represents a uniform distribution of
devices in the forest. The number of devices can be selected, and the grid will
subsequently be adapted. Each square corresponds to the maximum distance that the
wake-up signal can reach. The simulation starts from the central square with the detection
of a flame by a single device. A wake-up signal is sent to devices in the neighbouring
squares that subsequently enter the high-alert mode. The woke-up devices have a certain
probability of offloading an image in which a fire is present; otherwise, an image
portraying a forest without a fire is sent. If the response of the fire detection algorithm is
positive, the device wakes up nearby devices. The probability of detecting a flame
decreases with the increase of the distance from the central square. Moreover, the
probability increases with every high-alert-mode cycle (every minute by default). The
probabilities can be adapted to simulate different fire spread speeds. The combination of
the statistical model with a grid structure takes into account the possibility that other
devices in the area could have already been activated by other TTC Fires. The process stops
when all the devices deployed are in high alert mode.

Figure 4.3. Graphical example of the spatial simulation, the 100 sensors are indicated as green
marks and their field of view is represented by a green area centred on the sensor. The red mark is

the fire starting point.

The spatial simulation has been improved compared with the original idea. In this
simulation, an area of interest where the sensors are deployed can be selected. The

Version 1.0 12 November 2024 Page 31 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

coordinates of the sensors can be inserted, as well as the starting point of the fire (which
can also be randomised) and its average speed. The average field of view of the sensors (in
green in the map), as well as the average distance reached by the wake-up signals, are
inserted inside the program. When a sensor’s field of view is crossed by the spreading
flame, the device enters the high-alert mode and wakes up all reachable devices. All
devices whose field of view has been intersected by the fire send an image representing a
flame; otherwise, an image representing a forest is sent. The simulation runs until all the
installed devices are in high-alert mode. The simulation of the spreading of the fire is
currently being tested.

In the next cycle, the models will be updated for their use with the new COGNIT release
and refined to be as representative as possible of a realistic scenario.

Use Case Testbed

UC2 testbed is composed of the client devices, the on-premise machine and the two
simulation software applications.

The use of the esp32-CAM equipped with the OV2640 camera and the design of a custom
board based on the STM32L433RCT6 microchip are discussed in D5.3. The Internet
connectivity of the designed board, as well as the image acquisition using the esp32-CAM
board, was tested. Devices are currently being developed, with improvements to the
tested functionalities and integration of the remaining sensors to be ready to interact with
the COGNIT Framework in the following project cycles.

Figure 4.4. Images of the esp32-CAM and the prototype custom board based on STM32L433RCT6
microchip

An on-premise server has been deployed in Nature 4.0 headquarters to test the possibility
of integration between on premise and cloud resources and to be used as an edge node
for the UC2 reference scenario. The hardware components are as follow:

● 2 x CORSAIR VENGEANCE LPX DDR4 RAM 64GB (2x32GB) 3200MHz.
● 2 x SAMSUNGMZ-77E4T0B/EU 870 EVO SSD 4 TB.
● 2 x Crucial P3 Plus SSD 2TB PCIe Gen4 NVMe M.2 SSD.
● 1 x AMD Ryzen Threadripper PRO 5975WX processor 3.6 GHz 128 MB L3.
● 1 x GeForce RTX® 4090 24GB.

Version 1.0 12 November 2024 Page 32 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

5. Use Case #3: Energy

This use case is exploring the scenario of using smart electricity meters to optimise green
local energy usage in a household context, in which energy consumers are also energy
producers (prosumers). The use case is developed and tested by evaluating its goals in
Poland. In most Polish locations, the current energy system is carbon-intensive and
centralised, which means that there are only a few locations in the country where energy is
generated. As a consequence electricity must be transmitted over long distances through
the transmission and distribution network, resulting in high losses. In addition, bottlenecks
and disruptions in the network have the potential to affect huge areas and populations.
The energy industry of the future will be based on distributed systems, relying on
renewable energy sources (RESs) and energy storage solutions. This highly distributed
model of the energy network features many small producers of energy, aiming to reduce
costs, risks, and intensity of greenhouse gas emissions, and to eliminate transmission
energy losses because energy is produced and consumed locally. To make this a reality,
there is a strong need to manage energy consumption as well as its production to optimise
usage of local energy. Electricity meters, already at the interface between the building and
the power grid, are ideally positioned to manage such distributed smart energy systems.

5.1 Use Case Scenario and Architecture

The use case scenario and architecture are described in more detail in the previous
deliverable “D5.3 Use Cases - Scientific Report - c”, section 5.1 “Current architecture and
scenario”. To assist the reader, a summary is provided below.

In this scenario, the smart electricity meters run a number of user applications to manage
important appliances and energy assets installed (from a grid topology perspective)
behind the meter, adjusting and optimising operations in real-time, according to user
preferences. These appliances and assets include energy storages, photovoltaic
installations, heat pumps, electric vehicle chargers, and electric floor heating. By
empowering electricity meters with apps, connected to services equipped with advanced
decision-making algorithms and pre-trained AI models, they turn into highly personalised
Energy Assistants.

Ultimately, this approach leads to cost savings because of more effective usage of energy
and lowering overall demand for coal energy, for example.

This use case will mainly test the performance of the COGNIT Framework for:

● running the COGNIT client on highly resource-constrained devices;
● supporting a large number of clients (devices) in the same geographical area

(energy community);
● handling dynamic changes in Serverless Runtime requirements due to changes in

user preferences.

Version 1.0 12 November 2024 Page 33 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

5.2 Summary of developments during cycle M16-M21

During the last research cycle, M16-M21, the work has been focused on the following
topics:

● Getting the C-version of the COGNIT Device Client to run on the physical device.
● Updating the end device simulators, to support testing and demonstration of the

COGNIT Framework.
● The development of an AI-based version of the decision algorithm, which will be

offloaded to the COGNIT platform.

Running the C-version of the Device Client on the device

Since smart energy meters are devices with limited resources, this use case has focused on
working with the rest of the project to get the Device Client in C (DCC) to work on the
device, since it was deemed more suitable than the Python version. Before attempting to
run DCC on the device, we tried integrating it into our Phoenix-RTOS using the Qemu
emulator of IA32 architecture. This work raised some issues, most of them concerned with
our network stack, especially IPv6. After resolving them, we successfully ran the DCC on
the IA32 emulator and offloaded some basic functions to COGNIT Serverless Runtime.

Thereafter, we started working on putting the DCC on the smart energy meter. The
current status at the time of reporting is that the communication with the COGNIT
Platform works, but the function offloading is experiencing problems. These issues are
connected to the network stack, but we suspect the problemmight be on the side of the
modem that supplies the energy meter with an Internet connection. This matter will be
further investigated.

Updates to the end device simulators

End-device simulators are an important part of the testbed, used to test and verify the
behaviour of the devices and the decision-making algorithm before its implementation
into a real environment. They are expected to closely reproduce the operation of real
devices. With this in mind, the simple battery storage model developed earlier has been
replaced by a piecewise linear model with a charging power limit that decreases above a
certain energy state value. It better reflects the battery charging characteristic, which
consists of two distinctive parts: constant current and constant voltage (CC-CV).

A simulator of the electric vehicle (EV) battery has been implemented and integrated with
the smart energy meter simulator. We used a similar linear CC-CV battery model as the one
used for energy storage. The difference is that the EV version can be charged only when an
EV is parked and available at home. Otherwise, the car battery can be discharged by
driving with driving power. This EV battery operating logic has been added to the baseline
algorithm, enabling it to take EV battery charging management into account in its
decision-making process.

Version 1.0 12 November 2024 Page 34 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Development of an AI-based version of the decision algorithm

The work during the last cycle was mainly focused on research of a more advanced
decision-making algorithm using AI methods. A literature review of up-to-date solutions in
the field of home energy management systems (HEMS) was performed. The most
attention was paid to articles in which the designed system included elements consistent
with our actual test environment, i.e.: a renewable energy source, especially PV panels, a
battery energy storage system (ESS), a heating and air conditioning system, an electric
vehicle with a charger and uncontrolled load. The challenge turned out to be finding
publications in which the proposed solution was tested not only in a modelled
environment, but also implemented and verified in a real-life scenario.

Based on the literature analysis, we decided to use reinforcement learning (RL) which is
currently the most common and promising approach for optimising the control of devices
with unknown characteristics. In this area of machine learning, an agent interacts with a
specific environment to maximise a numerical reward. The agent's goal is to find an
optimal policy that defines a strategy for taking actions in relation to the environment in
all possible states. In the learning process, the agent tries to balance the exploration of
unknown territory with exploitation based on current knowledge. Following an action, the
environment changes state and returns the reward resulting from it. This continues until
the agent maximises the total cumulative reward received from the environment.

Figure 5.1. Scheme of home energy management system with AI-based decision algorithm.

The scheme of our proposed solution is presented in figure 5.1. The agent communicates
directly with the Smart Meter that manages all appliances in the smart home by measuring
energy production and consumption, reading current values and setting parameters on
controllers of end devices. The meter has too limited memory and CPU to store trained AI
models or perform complex calculations, so the algorithm responsible for selecting actions
is offloaded to the Serverless Runtime. The meter also queries the besmart.energy
platform for predictions of energy generation, consumption and weather forecasts so the
actions can be chosen taking the future into consideration. In the environment all

Version 1.0 12 November 2024 Page 35 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

important elements previously mentioned could be identified, but also uncontrollable
loads are shown. Power demands of non-shiftable loads (e.g. microwaves, refrigerators
and computers) must be satisfied completely without delay and cannot be interrupted. In
contrast, controllable loads, such as HVAC systems, can be controlled to flexibly adjust
their operating time and amount of energy consumption while meeting certain
operational requirements, e.g. temperature ranges.

We consider the situation in which the supposed HEMS algorithm performs optimal 24-h
ahead scheduling of appliances with a 1-h scheduling resolution. For , the∀𝑡 = 1, 2, ..., 24
state of the environment comprises the seven following variables:

● time remaining until planned EV departure,𝑡
𝑡

● energy generation from PV panels,𝐸
𝑡
𝑃𝑉

● energy consumption of uncontrollable loads,𝐸
𝑡
𝑐𝑜𝑛𝑠

● indoor temperature,𝑇
𝑡
𝑖𝑛𝑑

● outdoor temperature,𝑇
𝑡
𝑜𝑢𝑡

● energy level of energy storage system,𝑆𝑂𝐸
𝑡
𝐸𝑆𝑆

● energy level of EV battery.𝑆𝑂𝐸
𝑡
𝐸𝑉

For brevity, st is adopted to describe the environment state at time slot t, i.e.

. (5.1)𝑠
𝑡
 = 𝑡

𝑡
, 𝐸

𝑡
𝑃𝑉, 𝐸

𝑡
𝑐𝑜𝑛𝑠, 𝑇

𝑡
𝑖𝑛𝑑, 𝑇

𝑡
𝑜𝑢𝑡, 𝑆𝑂𝐸

𝑡
𝐸𝑆𝑆, 𝑆𝑂𝐸

𝑡
𝐸𝑉()

It is assumed that the indoor temperature at the next time slot depends only on the
indoor temperature, HVAC power input and weather in the current time slot. Moreover,
according to the linear battery model, the energy level of the ESS in the next time slot is
defined using only the current energy level and the current discharging/charging power.
The same applies to the EV battery charge level at the next time step, which can be
determined using the current energy level and charging power in case of car availability or
driving power otherwise. Thus, the environment can be characterised by a Markov decision
process (MDP), in which the next state depends only on the current state, along with𝑠

𝑡+1

the action chosen by the agent in the current state, ignoring all previous states and
actions.

The RL algorithm target is to maximise self-consumption while maintaining a comfortable
temperature range and keeping the energy levels of the ESS and the EV battery within
their respective thresholds. To accomplish that, the agent aims to optimally decide the
values of a set of actions that consists of:𝐴

● temperature setting on the HVAC controller in range ,𝑇𝑠𝑒𝑡 𝑇
𝑚𝑖𝑛
𝐻𝑉𝐴𝐶

, 𝑇

𝑚𝑎𝑥
𝐻𝑉𝐴𝐶⎡

⎢
⎣

⎤
⎥
⎦

● ESS charging/discharging power in range ,𝑝𝐸𝑆𝑆 − 𝑃
𝑚𝑎𝑥
𝐸𝑆𝑆 , 𝑃

𝑚𝑎𝑥
𝐸𝑆𝑆⎡⎢⎣

⎤⎥⎦

● EV battery charging power in range .𝑝𝐸𝑉 0, 𝑃
𝑚𝑎𝑥
𝐸𝑉⎡⎢⎣

⎤⎥⎦

Version 1.0 12 November 2024 Page 36 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

After performing an action at the state , the environment will move to a new state𝑠
𝑡

𝑠
𝑡+1

and return a reward .𝑟
𝑡

The reward function is formulated as the sum of the negative energy exchange between
the household and the external grid and the dissatisfaction with HVAC, ESS and EV related
to the consumer’s preferred comfort and appliance’s operation characteristics. The total
reward is expressed as:

, (5.2)𝑅
𝑡
 = − β𝐸 𝐸

𝑡
𝑔𝑟𝑖𝑑|||

||| + β𝐻𝑉𝐴𝐶𝑐
𝑡
𝐻𝑉𝐴𝐶 + β𝐸𝑆𝑆𝑐

𝑡
𝐸𝑆𝑆 + β𝐸𝑉𝑐

𝑡
𝐸𝑉()

where , , , are the coefficients of reward elements, added to balance theβ𝐸 β𝐻𝑉𝐴𝐶 β𝐸𝑆𝑆 β𝐸𝑉

targets of self-consumption and comfort. , , are the cost functions for the𝑐
𝑡
𝐻𝑉𝐴𝐶 𝑐

𝑡
𝐸𝑆𝑆 𝑐

𝑡
𝐸𝑉

HVAC, ESS and EV, respectively. is the energy exchanged with the grid, which can be𝐸
𝑡
𝑔𝑟𝑖𝑑

calculated as:

, (5.3)𝐸
𝑡
𝑔𝑟𝑖𝑑 = 𝐸

𝑡
𝑃𝑉 − 𝐸

𝑡
𝑃𝑉 + 𝐸

𝑡
𝐻𝑉𝐴𝐶 + 𝐸

𝑡
𝐸𝑆𝑆 + 𝐸

𝑡
𝐸𝑉()

where represents the energy consumption of the HVAC and , represent the𝐸
𝑡
𝐻𝑉𝐴𝐶 𝐸

𝑡
𝐸𝑆𝑆 𝐸

𝑡
𝐸𝑉

energy charging/discharging of the ESS and EV, respectively, at time . Our goal is for𝑡 𝐸
𝑡
𝑔𝑟𝑖𝑑

to ideally achieve a value of 0, as we want to consume all green energy produced internally
and not draw energy from the grid.

The cost function of the HVAC is defined as follows:

. (5.4)𝑐
𝑡
𝐻𝑉𝐴𝐶 = 𝑚𝑎𝑥 𝑇

𝑡
𝑚𝑖𝑛 − 𝑇

𝑡
𝑖𝑛𝑑, 0() + 𝑚𝑎𝑥 𝑇

𝑡
𝑖𝑛𝑑 − 𝑇

𝑡
𝑚𝑎𝑥, 0()

The agent receives a penalty for the consumer’s thermal discomfort that is defined as the

deviation of the indoor temperature from the preferred temperature range at𝑇
𝑡
𝑚𝑖𝑛, 𝑇

𝑡
𝑚𝑎𝑥⎡⎢⎣

⎤⎥⎦
time .𝑡

Next, the cost function of the ESS is expressed as:

. (5.5)𝑐
𝑡
𝐸𝑆𝑆 = 𝑚𝑎𝑥 𝑆𝑂𝐸

𝑚𝑖𝑛
𝐸𝑆𝑆 − 𝑆𝑂𝐸

𝑡
𝐸𝑆𝑆, 0() + 𝑚𝑎𝑥 𝑆𝑂𝐸

𝑡
𝐸𝑆𝑆 − 𝑆𝑂𝐸

𝑚𝑎𝑥
𝐸𝑆𝑆 , 0()

In this case, the dissatisfaction occurs when the becomes lower than𝑆𝑂𝐸
𝑡
𝐸𝑆𝑆 𝑆𝑂𝐸

𝑚𝑖𝑛
𝐸𝑆𝑆

(undercharging) or greater than (overcharging).𝑆𝑂𝐸
𝑚𝑎𝑥
𝐸𝑆𝑆

Finally, the cost function of the EV in defined as:

(5.6)𝑐
𝑡
𝐸𝑉 = 𝑚𝑎𝑥 𝑆𝑂𝐸

𝑚𝑖𝑛
𝐸𝑉 − 𝑆𝑂𝐸

𝑡
𝐸𝑉, 0() + 𝑚𝑎𝑥 𝑆𝑂𝐸

𝑡
𝐸𝑉 − 𝑆𝑂𝐸

𝑚𝑎𝑥
𝐸𝑉 , 0(), 𝑖𝑓 𝑡 ∈ ω

𝑎𝑟𝑟
, ω

𝑑𝑒𝑝[]
(5.7)𝑐

𝑡
𝐸𝑉 = 𝑚𝑎𝑥 𝑆𝑂𝐸

𝑑𝑒𝑝
𝐸𝑉 − 𝑆𝑂𝐸

𝑡
𝐸𝑉, 0(), 𝑖𝑓 𝑡 = ω

𝑑𝑒𝑝

. (5.8)𝑐
𝑡
𝐸𝑉 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Version 1.0 12 November 2024 Page 37 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Similar to the operation of ESS, the penalty results from the exceeding the𝑆𝑂𝐸
𝑡
𝐸𝑉

allowable range specified by and . Unlike the ESS reward function, it occurs𝑆𝑂𝐸
𝑚𝑖𝑛
𝐸𝑉 𝑆𝑂𝐸

𝑚𝑎𝑥
𝐸𝑉

only when the EV is available at home, so for time between time of EV arrival and𝑡 ω
𝑎𝑟𝑟

departure . Additionally, if is lower than consumers preferred at the timeω
𝑑𝑒𝑝

𝑆𝑂𝐸
𝑡
𝐸𝑉 𝑆𝑂𝐸

𝑑𝑒𝑝
𝐸𝑉

, the dissatisfaction cost increases due to the insufficient level of energy in EV battery.ω
𝑑𝑒𝑝

When jointly controlling all the appliances at time slot t, the HEMS agent intends to
maximise the expected return it receives over the future. In particular, the return is

defined as the sum of the discounted rewards, i.e. , where a discounting𝑅 =
𝑖=0

∞

∑ γ𝑖 𝑅
𝑡 +𝑖

factor is used to explain the relative importance of the current and futureγ ϵ [0, 1]
rewards.

To solve the MDP problem defined above and find the optimal policy π under which agent
acts, we propose an algorithm based on Deep Deterministic Policy Gradients (DDPG).
DDPG is a type of actor-critic method in which an agent is divided into two parts. The actor
network returns the probability of the action a the agent chooses in a given state . Then,𝑠

𝑡

a and are provided as input to the critic network, output of which is the numerical future𝑠
𝑡

value the agent would obtain in the final state. The critic network updates a function that
distinguishes between action and value based on two mechanisms, i.e., memory replay and
target networks. At the same time the policy gradient can be computed in the direction
suggested by the critic network and used to update the actor network parameters. In
contrast to simpler RL methods, DDPG is capable of dealing with continuous spaces of
both states and actions.

The algorithm has been trained on real data from a smart energy meter providing energy
production and consumption data covering a couple of months in 1-hour-slots. Historical
weather forecasts from our numerical model for the same localisation and time were used
to provide outside temperatures. One training episode over which reward was
accumulated was assumed to be 24 hours long, but the episode starting hour was random.
Initial state values of indoor temperature, storage and EV battery levels of energy were
also randomly drawn from normal distributions in the allowable ranges. Transitions to the
next state were simulated with the support of models of heating systems, storage and EV
batteries. Example learning curves for different coefficients of individual reward function
factors are shown in Figure 5.2.

Based on the attached curves, it can be seen that the algorithm converges, but the training
is not well stabilised. During the experiments, there were cases when the reward at the
end of a given number of episodes was worse than the best result during training. We are
still in the testing phase and we need to perform more experiments in order to determine
the right parameters and final architectures of the actor and critic networks.

Version 1.0 12 November 2024 Page 38 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Figure 5.2. Learning curves of DDPG-based HEMS algorithm for different coefficients of individual

reward function factors: a) ;β𝐸 = 0. 3, β𝐻𝑉𝐴𝐶 = 1. 5, β𝐸𝑆𝑆 = 1. 0, β𝐸𝑉 = 1. 0

b) ; c) ;β𝐸 = 0. 3, β𝐻𝑉𝐴𝐶 = 2. 0, β𝐸𝑆𝑆 = 1. 0, β𝐸𝑉 = 1. 0 β𝐸 = 0. 1, β𝐻𝑉𝐴𝐶 = 1. 5, β𝐸𝑆𝑆 = 1. 0, β𝐸𝑉 = 1. 0

d) .β𝐸 = 0. 1, β𝐻𝑉𝐴𝐶 = 2. 0, β𝐸𝑆𝑆 = 1. 0, β𝐸𝑉 = 1. 0

In the simulations performed so far, the agent has learned to optimally control devices in
terms of energy, assuming knowledge of the exact values of energy generation and
consumption for 24 hours in advance. Once this is achieved, we made sure that the training
conditions in which the agent makes decisions are more realistic by introducing predictive
data generated by ML models within the besmart.energy platform. The algorithm
managed to converge on a small artificially generated dataset, but we still need to
overcome some difficulties in training on real household data. This step is extremely
important in terms of the ability to make correct decisions in real time, since generating
perfect forecasts is impossible. We expect the agent to learn the error characteristics of
these signals and find a policy that takes them into account.

Updates to the Use Case codebase

In this cycle, the Energy Use Case developed the software by making modifications and
introducing the new functionality in the repositories, which are part of the COGNIT
Project’s GitHub. These are the following:

1. use-case-3 – repository with Energy Use Case Basic Demo. In version 1.0.1 we
introduced the home_energy_management package as the source code of end
device simulators and the decision-making algorithm. Next, the demo in version

Version 1.0 12 November 2024 Page 39 of 74

https://github.com/SovereignEdgeEU-COGNIT/use-case-3

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

1.0.2 was extended to include the use of an EV simulator in the user application.
Also preferences and parameters for the new device were added. Moreover, we are
working on releasing version 1.0.3 in which the demo is being integrated with the
AI-based version of the decision algorithm.

2. use-case-3-home-energy-management – repository with the Decision
Algorithm and Device Simulators. Version 1.0.0 was an initial release with a baseline
decision algorithm used to optimise energy management at home and simulators
of end devices such as photovoltaic arrays, simple electronic devices with
uncontrollable load, heating systems and battery energy storage systems. Version
1.0.1 introduced a simulator of a new appliance - EVs, whose batteries can be
charged when at home and discharged by driving. The possibility of managing EV
charging was added as part of the decision algorithm. In the near future, we will
release version 1.0.2 including the first approach to running the trained HEMS
algorithm based on DDPG. The repository contains the example of offloading the
decision-making function to the Serverless Runtime.

Both repositories are provided with the BSD 3-Clause licence and are publicly available.

5.3 Integration with the COGNIT Framework

Running user apps on the smart energy meter is possible thanks to the Phoenix-RTOS
operating system, which offers the needed mechanisms for effective partitioning. As a
result full safety through the separation of the partition for user apps and Distribution
System Operator (DSO) partition can be achieved, including the legally relevant Measuring
Instruments Directive part, see Figure 5.3. However, the smart energy meter is not
powerful enough to run AI algorithms directly on the device. Therefore, user apps are
equipped with the COGNIT Device Client which allows for offloading compute-intensive
tasks to the Cloud-Edge Continuum.

In the Energy Use Case, the common situation is that many devices are in the same
geographical area (district of houses). Because of this, the Cloud-Edge Continuum needs to
have enough resources available to handle requests from a large number of devices in a
given time. Identified metrics/features relevant to the common situation are:

● availability of resources in the Continuum;
● response time with results of execution;
● locality and confidentiality of sensitive data;
● usage of green energy for executing calculations.

Version 1.0 12 November 2024 Page 40 of 74

https://github.com/SovereignEdgeEU-COGNIT/use-case-3-home-energy-management

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Figure 5.3. Smart energy meter

Application structure

To optimise green local energy usage, decision algorithms should consider weather
forecasting data and other relevant predictions, e.g. energy cost, energy consumption or
production. Such services are provided by the external smart energy management cloud
platform besmart.energy, which provides weather forecasts data and predictions about
energy consumption and production, as well as energy cost predictions.

Energy communities could benefit by using rented (from DSO) space in the user partition
for running personalised user apps and lower energy usage from a grid by using locally
produced green energy more efficiently. Energy communities could own distributed edge
computation resources and use the COGNIT Framework to manage these resources. Figure
5.4 shows the basic application architecture.

Version 1.0 12 November 2024 Page 41 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Figure 5.4. Architecture for the Energy Use Case.

Version 1.0 12 November 2024 Page 42 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

The process diagram for the application is shown in Figure 5.5 below:

Figure 5.5. Process diagram for a single energy meter.

Version 1.0 12 November 2024 Page 43 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Relevant Key Features of COGNIT

Powering smart electricity meters with AI algorithms is a difficult task because of the
resource constrained devices. The sensitivity of operated data is high (energy consumption
data and energy production data of households). Another challenge is device
heterogeneity: there are a large number of devices with varying resources and capabilities
for execution of functions. Due to these challenges key features of COGNIT are:

● Device Client with low memory footprint (SDK in C language);
● keeping sensitive data close to its origin;
● automatic orchestration of workloads across the Cloud-Edge Continuum;
● automatic scaling up/down of Serverless Runtimes due to changes in requirements.

Validation Scenario

Due to validating responsibilities in the project the following validation scenarios
environments have been identified:

● A laboratory environment will consist of smart electricity meters equipped with
user applications which, by using COGNIT’s Device Client, offload the decision
algorithm and wait for execution results. Simulators of energetically important
appliances will be run on external devices (other than electricity meters). On-prem
edge nodes will be run in a laboratory environment. Local edge nodes should be
the most preferred place for executing decision algorithms due to their near
geographical placement.

● The simulation environment will consist of a large number of Energy Use Case
demo instances, which are going to simulate different scenarios with dynamic
changes of requirements for Serverless Runtimes. Here the local edge node should
be the most preferred place for executing decision algorithms due to near
geographical placement.

● A real-life testground in the form of a household with real appliances like an EV
charger, PV installations, a heating system and an energy storage. This environment
will also be equipped with a smart energy meter.

These environments will allow for validation of the relevant scenarios related to the
Energy Use Case.

Request patterns

In the presented reference scenario regarding a single house and a single smart electricity
meter, the following request patterns are relevant:

● Maximum resolution of requests for offloading the decision-making algorithm from
the Device Client to the COGNIT Framework is 1 minute. It means that every minute
new results (devices parameters) should be calculated and propagated to the
supervised processes (e.g. energy storage charging).

Version 1.0 12 November 2024 Page 44 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

● Due to the dynamic needs of the end user an asynchronous event requesting a stop
of a supervised process could happen at any time (e.g. need for stopping an EV
charging process).

● Due to the dynamic needs of the end user an asynchronous event requesting a
change of some user preferences could happen at any time (e.g. room temperature
or EV charging rate), of which some could influence the Serverless Runtime
requirements.

Use Case Testbed

The current deployment is made in a house in Poland, forming the testground. The
testground consists of following elements:

● Two photovoltaic installations with power of 14,6 kWp and 7,3 kWp. These are
managed by inverters connected to WLAN.

● The energy storage unit with capacity of 12,0 kWh which is connected to the
photovoltaic installation with power of 7,3 kWp. Energy storage is connected to the
inverter using an RS485 interface and the Modbus protocol.

● The electric vehicle with battery capacity of 107,8 kWh and an EV charger with
power of 22 kW connected to the WLAN network with possible integration using
the OCPP protocol.

● The heating system consists of a smart home HUB connected to the WLAN
network, with an HTTP REST API, resistive heating mats, heaters and temperature
sensors. The heating system is used in 25 rooms and all of the actuators could be
controlled via smart home HUB.

● The smart electricity meter is connected to the LAN which is measuring the energy
parameters of the house, and is also capable of communicating with other
appliances.

Version 1.0 12 November 2024 Page 45 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

6. Use Case #4: Cybersecurity

Use Case 4 of the project focuses on Cybersecurity and highlights the utilisation of the
COGNIT Framework through the implementation of an anomaly detection scenario within
a rover (vehicle).

6.1 Use Case Scenario and Architecture

The use case scenario and architecture are described in more detail in the previous
deliverable “D5.3 Use Cases - Scientific Report, section 6.1: Current architecture and
scenario”. A summary is provided below.

The current architecture consists of the following components:

● Rover data collection: Rovers collect data, including system logs and metrics such
as location, speed, and distance between vehicles.

● Data transfer: On the one hand, the collected data is transmitted to the anomaly
detection, which is deployed at the edge cluster. This step aims to ensure fast (low
latency) and secure transmission of the data to the detection system. On the other
hand, data will also be transmitted via DaaS when it is available for post-processing
(e.g. in-depth analysis, federated learning)

● Anomaly detection: Anomaly detection is performed using a Serverless Runtime,
with lightweight models running on the edge to reduce latency and heavier models
running in the cloud. This component analyses the incoming data to identify any
significant deviations from normal behaviour patterns.

● Migration Management: A crucial aspect of Use Case 4 is to demonstrate the
ability of the COGNIT Framework to manage vehicle migration and Serverless
Runtime availability based on the rover’s route and movement. This feature
ensures service continuity and operational efficiency.

6.2 Summary of developments during cycle M16-M21

During the M16-M21 cycle, we trained a LAnoBERT-based model for anomaly detection in
authentication logs. We focused on aspects concerning the collection of data from rovers
to be sent to anomaly detection, while integrating the use of COGNIT components, in
order to ensure compliance with requirements and specifications.

Rover Data Collection

We developed a custom program to facilitate the automated collection of new entries
from the authentication log (auth.log) on the rover system. This program functions by
continuously monitoring the log file, detecting any newly written lines or blocks of lines in
real-time. As soon as a new entry is added to the log file, whether it is a single line or a set
of multiple lines written together, the program captures the latest addition.

Once the program detects a change, it retrieves the newly appended log entries and
immediately passes them on to the LAnoBERT model for analysis using the COGNIT

Version 1.0 12 November 2024 Page 46 of 74

Unset

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Framework. By feeding this real-time data into the model, we enable LAnoBERT to
promptly analyse and detect any potential anomalies, such as unauthorised access
attempts, brute-force attacks, or irregular patterns of failed logins. This integration
ensures that the system can continuously monitor authentication activities on the rover
and respond quickly to any security threats as soon as they are identified.

The combination of real-time data collection and anomaly detection through LAnoBERT
enhances the system’s ability to identify suspicious activity without requiring manual log
inspection, thus improving the overall security posture and responsiveness of the rover's
operations.

Figure 6.1. Log file capture and analysis diagram.

Anomaly Detection: Authentication Logs

LAnoBERT is an anomaly detection model itself based on BERT (Bidirectional Encoder
Representations from Transformers). It is specifically designed to identify anomalies in
system logs using a parser-free model, meaning it does not need predefined templates to
understand the logs. This model is pre-trained to predict hidden elements in log
sequences, which makes it possible to identify anomalies as deviations from normal
patterns.

LAnoBERT works in four main steps:

1. Data preprocessing: Logs are normalised, in particular by replacing IP addresses
(IP), port numbers (NUM), username (USER) and other specific information with
generic tokens. This makes it possible to standardise the data.
Before normalisation :

Oct 14 12:34:56 server sshd[12345]: Failed password for invalid user admin
from 192.168.1.100 port 22 ssh2
Oct 14 12:35:05 server sshd[12345]: Failed password for root from
192.168.1.100 port 22 ssh2
Oct 14 12:35:08 server sshd[12345]: Accepted password for user1 from
192.168.1.101 port 22 ssh2

Version 1.0 12 November 2024 Page 47 of 74

Unset

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

After normalisation :

Oct 14 TIME sshd[NUM]: Failed password for invalid user USER from IP port
NUM ssh2
Oct 14 TIME sshd[NUM]: Failed password for root from IP port NUM ssh2
Oct 14 TIME sshd[NUM]: Accepted password for USER from IP port NUM ssh2

2. Training: The model uses BERT's hidden modelling. Part of the log sequences is
hidden, and LAnoBERT learns to predict the hidden elements based on the
surrounding context. LAnoBERT is pre-trained on normal logs. In these logs,
occasional authentication failures may be normal, but a repeated series of failures
or unknown user logins would be less frequent.

3. Testing phase: During the testing phase, LAnoBERT will mask certain words and try
to predict them based on the context. For example, it could mask the word
"Accepted" or "Failed" and try to predict the correct word based on the sequence. If
a sequence like the one with multiple failed attempts coming from the same IP
address (e.g. 192.168.1.100) is encountered, the model could identify this series of
failures as anomalous because it differs from what it has seen in the normal logs.

4. Anomaly score calculation: For each keyword (e.g. "Failed", "password", "root",
etc.), an anomaly score is calculated. The words with the highest scores (indicating
anomalous behaviours) are selected to indicate suspicious areas of the log. If for
example, failed login attempts for non-existent users or for the root user (which is
often a sign of attack) are too frequent in a short period of time, LAnoBERT could
assign a high anomaly score to these events.

Figure 6.2. Architecture of LAnoBERT

Version 1.0 12 November 2024 Page 48 of 74

Unset

Unset

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

In this research, LAnoBERT was applied to the analysis of authentication logs, and more
precisely on the auth.log file coming from the rovers. This file contains crucial information7

about login attempts (successful or failed) as well as other security-related events.

Using LAnoBERT for anomaly detection in these logs has several advantages:

● It can identify suspicious patterns in login attempts, such as brute force attacks,
where an attacker tries multiple combinations of credentials.

● LAnoBERT is able to spot abnormal access attempts, such as repeated failed logins
for invalid users or for the “root” account, which is often a target for attackers.

Below, we provide a concrete example of normal and abnormal authentication logs to
illustrate how the model works.

Normal Logs:

The example log below shows successful logins and some occasional password failures,
likely related to human error. The model will identify these logs as normal, as they follow
typical authentication patterns.

Oct 14 12:45:01 server sshd[12345]: Accepted password for roveradmin1 from
192.168.1.101 port 22 ssh2
Oct 14 12:46:07 server sshd[12346]: Failed password for roveradmin1 from
192.168.1.102 port 22 ssh2
Oct 14 12:46:12 server sshd[12346]: Accepted password for root from
192.168.1.102 port 22 ssh2
Oct 14 12:50:33 server sshd[12347]: Accepted password for roveradmin2 from
192.168.1.103 port 22 ssh2

Abnormal Logs:

The example log below, however, shows repeated failed login attempts, coming from the
same IP address. This behaviour is typical of a brute-force attack. LAnoBERT will identify
these logs as abnormal due to the high frequency of failures and the use of invalid
accounts.

Oct 14 12:55:03 server sshd[12348]: Failed password for invalid user admin
from 192.168.1.150 port 22 ssh2
Oct 14 12:55:10 server sshd[12349]: Failed password for root from
192.168.1.150 port 22 ssh2
Oct 14 12:55:15 server sshd[12349]: Failed password for root from
192.168.1.150 port 22 ssh2

7 Yukyung Lee, Jina Kim, and Pilsung Kang. 2023. LAnoBERT: System log anomaly detection based on BERT masked language
model. Appl. Soft Comput. 146, C (Oct 2023). https://doi.org/10.1016/j.asoc.2023.110689

Version 1.0 12 November 2024 Page 49 of 74

https://doi.org/10.1016/j.asoc.2023.110689

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Oct 14 12:55:20 server sshd[12349]: Failed password for root from
192.168.1.150 port 22 ssh2
Oct 14 12:55:25 server sshd[12350]: Failed password for invalid user guest
from 192.168.1.150 port 22 ssh2

The research conducted during the M16-M21 cycle allowed us to develop and test the
LAnoBERT model in the context of anomaly detection in authentication logs. The results
are promising, demonstrating the model’s ability to efficiently identify suspicious
behaviours in system logs while avoiding the need for traditional log analyzers. These first
results open up prospects for applying the model to other types of logs in various
operational contexts.

However, to improve both efficiency and adaptability, our next goal is to refine the
LAnoBERT model. The main objective of this refinement phase is twofold:

● Optimisation: we aim to refine the model to improve its accuracy in detecting
anomalies while reducing the computational load to be more efficient when
running in a serverless execution. This process will involve additional training of
LAnoBERT on more diverse log data, which will help it generalise better and detect
a wider range of suspicious behaviours with fewer false positives.

● Lightweight deployment via COGNIT: A key aspect of the fine-tuning effort is to
make the model more lightweight for efficient deployment at the edge. This
optimisation is particularly important because LAnoBERT is deployed in a
Serverless Runtime.

6.3 Integration with the COGNIT Framework

In this use case, several core features of the COGNIT Framework are leveraged to address
the challenges posed by the dynamic environment of a moving rover and the need for
real-time anomaly detection. Figure 6.3 shows a high-level diagram of the architecture for
the use case integration with COGNIT.

One of the most critical features used in this use case is the AI-Enabled Orchestrator's
ability to predict and plan the deployment of Serverless Runtimes (SR) based on the
rover's route and the location of the Device Client (DC). This predictive capability allows
for proactive resource allocation, ensuring that the SR is available and ready at the next
optimal edge node before the rover reaches that point.

The Device Client plays a crucial role in ensuring that the Service Level Agreement (SLA) is
respected. If a violation occurs, such as excessive latency, the Device Client can
autonomously trigger a switch to a more suitable edge node defined by the AI-Enabled
Orchestrator.

Version 1.0 12 November 2024 Page 50 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Figure 6.3. High-level architecture for the Cybersecurity Use Case.

Application structure

The cybersecurity case study will use the COGNIT Platform to manage offloading of an
anomaly detection function to the edge. The Device Client communicates with the COGNIT
Frontend to determine a suitable edge cluster for offloading the function, and maintains a
connection with the selected edge cluster, until the device or the COGNIT Frontend
requests a migration to another one. The call to the COGNIT Frontend provides the
necessary data for the AI-Enabled Orchestrator to identify the most appropriate Edge
Cluster on which to deploy the Serverless Runtime and create the necessary software
stack to deploy the anomaly detection function. The Device Client then offloads the
anomaly detection function to the edge, by passing system logs as parameters to the
function. This is demonstrated in Figure 6.4 below.

Figure 6.4. Device Client interaction with COGNIT Framework for log’s anomaly detection.

Version 1.0 12 November 2024 Page 51 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

As the platoon of rovers progresses towards its destination on the road network, the
response time (RT) of the anomaly detection function that is running on an edge cluster
needs to be monitored with respect to its SLA. If the RT deteriorates too much, then the
anomaly detection function needs to be redeployed from one edge cluster to another with
a better RT that will respect the SLA RT. Based on the latest version of the COGNIT
Framework, it is the device that is responsible for deciding when to connect to another
edge server. This philosophy is similar to 5G where the radio access network part of the 5G
infrastructure and the device works together to monitor network conditions. In 5G the
device measures the signal quality of its current connection and nearby 5G cells
(antennas). These measurements include signal strength, signal quality, and other
parameters like latency and interference.

In COGNIT for the device to make the switch from one edge platform to another without
violating the RT SLA, it needs to know how long it will take to redeploy the anomaly
detection function on a new edge cluster. This is the responsibility of COGNIT. With this
information the device knows when to request the creation of a new Serverless Runtime
and anomaly detection function on the new edge cluster so that there is no interruption in
anomaly detection and no violation of RT SLA. This places the following requirements on
the COGNIT Framework:

● It should be able to predict SLA RT violation.
● It should be able to identify the Edge Cluster with the right type of resources and

their availability in time.
● It should be able to inform the device of the time needed to provision Serverless

Runtime on the Edge Cluster and start the anomaly detection function.

These requirements can be supported by the AI-Enabled Orchestrator and a generic
location based RT prediction function for devices that move and need to reconnect to
another Edge Cluster with better RT.

The sequence diagram in Figure 6.5 below shows the interactions between the Device
Client and the Edge Cluster Frontend:

● The Device Client will store its location data in the DaaS, when the service will be
available in the future. In the security case study the data is the location of the
rover platoon.

● The AI-Enabled Orchestrator continuously reads the location of the mobile device
(rover platoon).

● The AI-Enabled Orchestrator uses an AI-based generic location based RT prediction
function to determine if it needs to start planning preparation of the Serverless
Runtime for the next edge cluster. In the above sequence diagram, it produces a
warning that the RT will soon be violated.

● The AI-Enabled Orchestrator verifies that the Edge Cluster has the right types of
resources and enough capacity to deploy a Serverless Runtime for the anomaly
detection function.

● Since the required resources are available, the AI-Enabled Orchestrator reserves
them, deploys the Serverless Runtime along with the anomaly detection function
image via the Edge Cluster Frontend.

Version 1.0 12 November 2024 Page 52 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

● The AI-Enabled Orchestrator then informs the device, via the COGNIT Frontend,
that a switch to a new edge cluster is required to avoid violating the RT SLA.

● The Device then makes the switch to a new Edge Cluster for the next call of the
anomaly detection function.

Figure 6.5. Interactions between the edge device and COGNIT Framework for switching Edge
Clusters.

As described in the sequence diagram, the edge device, i.e. the rover platoon in this case
study, interacts only with the COGNIT Frontend component of the COGNIT Framework.
The rest of the interactions required for switching edge clusters for the execution of the
anomaly detection function are internal to the COGNIT Framework. In summary the
AI-Enabled Orchestrator monitors the location of the mobile device, i.e. rover platoon, and
invokes an AI based generic location based RT prediction function to determine when to
prepare a Serverless Runtime and deploy it on an edge cluster with a better RT. When the
prediction function indicates that the RT will soon be violated, the AI-Enabled
Orchestrator looks for another edge cluster and deploys a Serverless Runtime with the
anomaly detection function. When it is ready, the AI-Enabled Orchestrator informs the
device via the COGNIT Frontend that it can switch to another edge cluster for the next
execution of the anomaly detection function. The device can then switch to the new edge
cluster for the next execution of the anomaly detection function.

Version 1.0 12 November 2024 Page 53 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Validation Scenario

The validation scenario consists of reproducing the conditions during the rover
movements, the transitions between edge nodes, and the processing of data via COGNIT.
Here are the key elements of the validation process:

1. Initialising the rover connection to COGNIT:
When the rover starts, it establishes a connection with the COGNIT Frontend. This
step consists of authenticating the rover.

2. Creating and deploying the Serverless Runtime:
After initialization, the rover requests the creation of a Serverless Runtime where
the anomaly detection function will be executed. COGNIT manages the
orchestration and deployment of the Serverless Runtime in the most optimal
location and using the appropriate Serverless Runtime flavour of UC4, that contains
all the dependencies necessary for the anomaly detection to work. (Flavour as
defined in Deliverable D3.1.)

3. Executing the anomaly detection function with collected data:
The anomaly detection function is executed by processing the authentication data.
The last block of lines written in the auth.log file is captured and passed as a
parameter to the function via the Device Client.

4. Continuous data flow and function re-execution:
During the rover’s movement, new data is continuously transmitted to the anomaly
detection function. Each new block of logs triggers the re-execution of the
function. COGNIT must ensure that these data flows are processed in near
real-time, while maintaining minimal latency between data collection and function
execution.

5. Performance measurement and response time comparison:
Throughout the process, we measure execution speed, data transmission times,
and response times. A performance comparison will be made between using the
serverless environment via COGNIT and using local anomaly detection (without
using COGNIT and the edge).

6. Edge node switching:
As the rover moves, and its latency deteriorates beyond the SLA, COGNIT should
orchestrate a switch to another edge node to maintain low-latency processing and
respect the SLA.

To validate these requirements, we will simulate the rover’s operations, including its
movement across different network areas to evaluate the planning and execution of edge
node transitions and how they affect the speed of anomaly detection execution.
Performance metrics, such as initialization time, execution time, response latency, and
node switching efficiency, will be measured to ensure that the COGNIT capabilities meet
the requirements of the Use Case.

Version 1.0 12 November 2024 Page 54 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Use Case Testbed

To validate our use case, we deployed a complete stack of the COGNIT Framework in a
virtualized environment hosted at CETIC. This setup includes the following hardware
configuration:

● 2x Intel(R) Xeon(R) Gold 5317 CPUs @ 3.00GHz (12 cores, 24 threads per CPU).
● 256GB RAM.
● Approximately 40TB of network-attached storage configured on TrueNAS.
● Networking resources with two 1Gbps NICs and four 10Gbps NICs.

The COGNIT Framework operates across four virtual machines (VMs), each with:

● 2x CPUs.
● 4GB RAM.
● 100GB disk space.

In this stage, resource allocation on the VMs has been limited to prioritise integration and
deployment testing. Moving forward, we plan to migrate to a more powerful setup to
assess performance in conditions that closely replicate real-world deployments.

The rover itself has been virtualized and deployed on a separate hypervisor, with resources
aligned to mimic the specifications of a Raspberry Pi, with:

● 4 CPU cores.
● 2GB RAM.
● 32GB disk space.

This environment also includes a simulation of necessary components, replicating
interactions between an edge node and a connected vehicle. After configuring and testing
the testbed to ensure it mirrors real-world conditions, including the addition of a node,
network latency, and transitions between edge nodes, we will deploy an Edge cluster
on-site at CETIC and connect it to the main COGNIT testbed.

Version 1.0 12 November 2024 Page 55 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

PART II. Software Integration and Verification

7. Software Integration Process and Infrastructure

In this development cycle the OpsForge tool has been updated to automatically deploy8

the new version of the COGNIT software stack, which is aligned with the new architecture
defined in this cycle. This matches the second version of the COGNIT Software Stack,
labelled with release-cognit-2.0. Several accommodations were made in the tool to: a) add
Biscuit support for the OpenNebula front-end, b) allow for cross-site live migration of
Serverless Runtimes and c) build images of the Serverless Runtimes leveraging the KIWI
NG project.9

7.1 OpenNebula Biscuit Auth Extension

The Biscuit authorization driver has been developed for OpenNebula in this development10

cycle. This driver enables the use of biscuit tokens as a replacement of a user password11

when issuing API Calls. Each user can generate tokens with their own private key, and
register their public key as their password when creating the user. This public key will
authenticate the tokens signed by the private key. This contribution has not been added
upstream, and therefore it needs to be added on top of a stock OpenNebula installation.

OpsForge has been extended to automatically deploy and also configure this new
OpenNebula auth driver when the COGNIT stack is deployed.

7.2 Cross-Site Live Migration Configuration

A multi-edge cluster private configuration is a network topology that enables Serverless
Runtime instances to run spread across multiple edge clusters. Each cluster is a group of
KVM nodes and can be geographically separated from other edge clusters.

The Serverless Runtimes Virtual Machines will run using an overlay network using the
OpenNebula VXLAN driver on EVPN mode. This overlay network creates an L2 network for
VMs to run. Serverless Runtimes will be able to reach each other regardless of the KVM
node where they are running. Serverless Runtimes will also be able to live-migrate from
one KVM node to another while keeping the same IP address on the L2 overlay network.

This configuration is automatically performed in the OpenNebula frontend, rendering a
configuration as described in Figure 7.1. The OneGate endpoint running in the frontend is
reverse proxied through an Ingress instance (implemented by a Virtual Router VM), which
is automatically managed by the Cloud/Edge Manager and made available in any Edge
Cluster to be used to run Serverless Runtimes. This endpoint needs to be reachable by the

11 https://doc.biscuitsec.org/getting-started/introduction

10 https://github.com/SovereignEdgeEU-COGNIT/opennebula-extensions/tree/main/biscuit

9 https://documentation.suse.com/appliance/kiwi-9/single-html/kiwi/index.html

8 https://github.com/SovereignEdgeEU-COGNIT/cognit-ops-forge

Version 1.0 12 November 2024 Page 56 of 74

https://doc.biscuitsec.org/getting-started/introduction
https://github.com/SovereignEdgeEU-COGNIT/opennebula-extensions/tree/main/biscuit
https://documentation.suse.com/appliance/kiwi-9/single-html/kiwi/index.html
https://github.com/SovereignEdgeEU-COGNIT/cognit-ops-forge

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Virtual Router (VR) in order to perform SDNAT. The EVPN VXLAN virtual network is
created with the proper configuration required by the VXLAN driver in EVPN mode.

Figure 7.1OpsForge Network Topology Deployment

Edge clusters need to be created with the OpenNebula OneProvision tool. Due to this12

requirement, OpsForge automatically instals all the OneProvision dependencies in the

12 https://docs.opennebula.io/6.10/provision_clusters/edge_clusters/overview.html

Version 1.0 12 November 2024 Page 57 of 74

https://docs.opennebula.io/6.10/provision_clusters/edge_clusters/overview.html

Unset

Unset

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

OpenNebula frontend instance deployment. These include tools like Ansible, Terraform
and Python libraries that are not installed as part of the standard package dependencies in
the frontend installation.

7.3 OpsForge KIWI Integration

OpenSUSE KIWI is a project oriented to Appliance building. An appliance is a ready-to-use
image of an operating system including a pre-configured application for a specific use
case. The appliance is provided as an image file and needs to be deployed to, or activated
in the target system or service.

OpsForge has been integrated with KIWI in order to build the Serverless Runtimes for the
different Use Case flavours, treating a Serverless Runtime as a KIWI Appliance. A new
separate workflow exists to build the Serverless Runtime appliance. In order to trigger the
build process, the following command must be run:

./opsforge build_sr <host>

where <host> needs to contain the hostname/IP address of a SUSE server with the needed
dependencies to build the Serverless Runtime appliance and enough space available to
bootstrap a new image (about 10 GB is typically enough). The needed Ansible playbooks to
coordinate the KIWI processes are included in the OpsForge repository.13

The result of running the above command will be a qcow2 image containing a vanilla
OpenSUSE Guest OS with the Serverless Runtime software installed. The output of the14

process would look as follows:

./opsforge build_sr 172.20.0.5

PLAY [Setup kiwi builder]
**

TASK [Gathering Facts]

[WARNING]: Platform linux on host kiwi1 is using the discovered
Python

14 https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime

13 https://github.com/SovereignEdgeEU-COGNIT/cognit-ops-forge/tree/main/ansible/playbooks/roles/kiwi

Version 1.0 12 November 2024 Page 58 of 74

https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime
https://github.com/SovereignEdgeEU-COGNIT/cognit-ops-forge/tree/main/ansible/playbooks/roles/kiwi

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

interpreter at /usr/bin/python3.6, but future installation of another
Python

interpreter could change the meaning of that path. See

https://docs.ansible.com/ansible-

core/2.16/reference_appendices/interpreter_discovery.html for more
information.

ok: [kiwi1]

TASK [kiwi : Verify openSUSE distribution]

skipping: [kiwi1]

TASK [kiwi : Install required packages]
**

ok: [kiwi1]

TASK [kiwi : Copy kiwi image description files]

ok: [kiwi1]

TASK [kiwi : Check if output directory exists and is not empty]

ok: [kiwi1]

TASK [kiwi : Clean up output directory]
**

changed: [kiwi1]

TASK [kiwi : Create empty output directory]

changed: [kiwi1]

TASK [kiwi : Build kiwi image]

changed: [kiwi1]

Version 1.0 12 November 2024 Page 59 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

TASK [kiwi : Convert raw image to qcow2]

changed: [kiwi1]

PLAY RECAP

kiwi1 : ok=8 changed=4 unreachable=0
failed=0 skipped=1 rescued=0 ignored=0

The above process generates an image in the host ‘172.20.0.5’, with the path to the
appliance being ‘/root/kiwi-image/output/cognit-sr.x86_64-1.0.0.qcow2’.

The objective for the next development cycle is to add the needed KIWI resources to build
the 4 different Serverless Runtime flavours for the Use Cases.

7.4 Second Version of the COGNIT Software Stack

The OpsForge component has been updated to automatically deploy the 2.0 version of the
COGNIT software stack, which includes the components of the revised architecture
presented in “D2.4 COGNIT Framework - Architecture - d”. The list of components
deployed by OpsForge that constitutes the 2.0 version of the COGNIT software stack, can
be found in Table 7.1. This can be deployed in AWS or on premises, in the same way as
described in “D5.3 Use Cases - Scientific Report - c”.

Name Documentation Testing Installation

Device Client (Python) Wiki documentation Test folder README

Device Client (C) N/A Test folder README

COGNIT Frontend User guide Test folder Install guide

Edge Cluster Frontend User guide Test folder Install guide

Cloud-Edge Manager Official doc Q&A Install guide

Serverless Runtime Wiki documentation Test folder README

AI-Enabled Orchestrator User guide See docs Install guide

Table 7.1.Main COGNIT 2.0 Framework components

Version 1.0 12 November 2024 Page 60 of 74

https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/wiki
https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/tree/main/cognit/test
https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/blob/main/README.md
https://github.com/SovereignEdgeEU-COGNIT/device-runtime-c/tree/master/cognit/test
https://github.com/SovereignEdgeEU-COGNIT/device-runtime-c/blob/master/README.md
https://github.com/SovereignEdgeEU-COGNIT/cognit-frontend#use
https://github.com/SovereignEdgeEU-COGNIT/cognit-frontend/tree/main/tests
https://github.com/SovereignEdgeEU-COGNIT/cognit-frontend#install
https://github.com/SovereignEdgeEU-COGNIT/edgecluster-frontend#use
https://github.com/SovereignEdgeEU-COGNIT/edgecluster-frontend/tree/main/tests
https://github.com/SovereignEdgeEU-COGNIT/edgecluster-frontend#install
https://docs.opennebula.io/
https://github.com/OpenNebula/one/wiki/Quality-Assurance
https://docs.opennebula.io/6.8/installation_and_configuration/frontend_installation/index.html
https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime/wiki
https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime/tree/main/app/test
https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime/blob/main/README.md
https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator/blob/main/MLServer/README.md
https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator/blob/main/README.md#Testing
https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator/tree/main/MLServer

Unset

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

The main differences in the list of components with respect to the 1.0 COGNIT stack
components are:

● New component COGNIT Frontend, which is the new entry point to the COGNIT
stack functionality.

● New component Edge Cluster Frontend, which acts as proxy and load balancer for
function execution requests to the different active Serverless Runtimes.

● Deprecated component Provisioning Engine, this previously developed
component doesn’t serve a purpose in the new architecture, since there is no need
to facilitate the creation of new SRs to the Device Client, but rather this action is
now initiated by the AI-Enabled Orchestrator, which consumes this functionality
directly from the Cloud Edge Manager.

At the end of this third development cycle, OpsForge fully automates the deployment of
the following components:

● OpenNebula as the Cloud-Edge Manager. Extensions made to OpenNebula in the
project context that are not contributed upstream, and which can be found in the
opennebula-extensions repository are applied automatically. The OpenNebula15

services are deployed in a single VM.
● COGNIT Frontend deployed in a dedicated server or Virtual Machine.
● AI-Enabled Orchestrator, deployed on its own dedicated server or Virtual Machine.

In the V1.0 of the architecture this was completely automated, but due to the
change in architecture, most of the AI-Enabled Orchestrator deployment and
configuration is still a manual step.

● Serverless Runtime image, using a built-in function build_sr (described in Section
7.3 of this document).

After the initial deployment, the OpenNebula OneProvision tool can be used to add
computing resources to the COGNIT infrastructure, to add processing capacity in the
desired geographic locations using remote OpenNebula clusters. After the computing
resources are deployed in these remote OpenNebula clusters, an Edge Cluster Frontend
needs to be deployed manually to proxy requests from Device Clients to these clusters.
Lastly, the Device Client software can be used to offload application-specific functions to
the COGNIT Platform, serving a FaaS paradigm in the cloud edge continuum.

The 2.0 version of the COGNIT stack can be deployed using OpsForge with an input YAML
file such as the following:

:infra:
:hosts:
:ingress: 172.20.0.1
:cloud: 172.20.0.4
:frontend: 172.20.0.9

15 https://github.com/SovereignEdgeEU-COGNIT/opennebula-extensions

Version 1.0 12 November 2024 Page 61 of 74

https://github.com/SovereignEdgeEU-COGNIT/opennebula-extensions

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

:ai_orchestrator: 172.20.17
:cognit:
:app:
:base: http://app_server.cognit/base_app # Replace with publicly

available app
:certificate:
:crt: '~/certificate.crt'
:key: '~/certificate.key'

:frontend:
:version: release-cognit-2.0

:ai_orchestrator:
:version: release-cognit-2.0

:cloud:
:version: 6.10
:ee_token: <enterprise_edition token for Cloud Edge Manager>
:extensions:
:version: main

Version 1.0 12 November 2024 Page 62 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

8. Testbed Environment

This section is a brief summary of the changes made to the main testbed environment
compared to what was documented in “D5.3 Use Cases - Scientific Report, section 8:
Testbed Environment”. All implementation and setup details of the testbed infrastructure
are documented and available to all project partners in a private repository on GitHub.16

8.1 Central testbed setup

There have been no major updates to the central testbed setup at RISE’s ICE Datacenter in
Luleå (Sweden) during this cycle. For updates to the use-case-specific testbeds, we refer
the reader to the corresponding Use Case sections in this document (Sections 3 to 6).

8.2 Upgraded hardware

NVMe PCI disks have been installed to support both compute hosts in the ice cluster
(p02r11srv01 and p02r11srv15). This decreases the instantiation time of FaaS Serverless
Runtimes (VMs) by an order of magnitude.

8.3 Network adaptations to support the new architecture

The new architecture does not require public IP addresses assigned to instantiated
Serverless Runtimes, which removes the dependency on IPv6 altogether. Because the new
architecture now supports both IPv4 and IPv6, we decided to switch to using IPv4 in the
testbed. The configured IPv6 networks will still be available for IPv6 specific testing, so
this configuration setup is not removed. However, private IPv4 subnets have been created
on edge sites from which IP addresses are assigned to FaaS Serverless Runtimes.

8.4 New components deployed

The new architecture includes two new components: the COGNIT Frontend, and the
COGNIT Edge Cluster Frontend. Furthermore, the Provisioning Engine component is now
deprecated.

COGNIT Frontend

This is a central component running on the ICE Datacenter. The service is hosted by
the same VM that previously hosted the Provisioning Engine service. A new API
endpoint has been added to load balancer:

● https://cognit-lab-frontend.sovereignedge.eu

16 https://github.com/SovereignEdgeEU-COGNIT/infrastructure

Version 1.0 12 November 2024 Page 63 of 74

https://www.ri.se/en/ice-datacenter
https://cognit-lab-frontend.sovereignedge.eu/
https://github.com/SovereignEdgeEU-COGNIT/infrastructure

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Edge Cluster Frontend

Every edge site is fronted by one of these instances. It acts as a proxy to Serverless
Runtimes running on the private network. On the ICE Datacenter site the COGNIT
Edge Cluster Frontend VM is running alongside the dynamic Serverless Runtimes
with two interfaces, one with a public IP and one on the private network.

Version 1.0 12 November 2024 Page 64 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

9. Software Requirements Verification

Possible status are: NOT STARTED | IN PROGRESS | COMPLETED

9.1 Device Client

SR1.1 Interface with COGNIT Frontend

Status: IN PROGRESS

Description: Implementation of the communication of the Device client with the
COGNIT Frontend.
Following the instructions of the Project’s GitHub repository, a user can authenticate,17

update application requirements and get an Edge Cluster Frontend IP address to
offload the execution of a Python function. All the library functionalities can be tested
standalone by executing the unit tests provided on the GitHub repository.18

Completed Verification Scenarios:

● [VS1.1.1] The Device Client is able to get authorization from COGNIT and is able
to send App valid requirements to the COGNIT Frontend.

● [VS1.1.2] The Device Client is able to receive a valid Edge Cluster (effectively a
valid Edge Cluster Frontend IP address).

● [VS1.1.3] The Device Client is able to update the App requirements at any
moment.

● [VS1.1.4] The Device Client is able to receive a changed Edge Cluster seamlessly
from a COGNIT’s proactive decision making action.

Pending Verification Scenarios:

● [VS1.1.5] The Device Client is able to handle (upload/read) data on the COGNIT
global layer.

SR1.2 Interface with Edge Cluster

Status: IN PROGRESS

Description: Implementation of the communication of Device client with the Edge
Cluster.

18 https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/tree/main/cognit/test

17 https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/blob/main/README.md

Version 1.0 12 November 2024 Page 65 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Completed Verification Scenarios:

● [VS1.2.1] The Device Client is able to execute functions (either preloaded or
uploading it at the moment of execution) on the assigned Edge Cluster.

Pending Verification Scenarios:

● [VS1.2.2] The device Client is able to handle (upload/read) data privately in the
assigned Edge Cluster.

SR1.3 Programming languages

Status: IN PROGRESS

Description: Support for different programming languages.

Completed Verification Scenarios:

● VS[1.3.2] Test previously described validation scenarios implemented in Python
language.

Pending Verification Scenarios:

● VS[1.3.1] Test previously described validation scenarios implemented in C
language.

SR1.4 Low memory footprint for constrained devices

Status: NOT STARTED

Pending Verification Scenarios:

● [VS1.4.1] Test validation scenarios described above on a device with less than
500kB of RAM.

SR1.5 Security

Status: IN PROGRESS

Completed Verification Scenarios:

● [VS1.5.1] The Device Client is able to perform secure communications against
the COGNIT frontend and the assigned Edge Cluster Frontend with the

Version 1.0 12 November 2024 Page 66 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

acceptance of the authorization mechanism.

Pending Verification Scenarios:

● [VS1.5.2] The Device Client is not permitted any unauthorised action towards the
COGNIT Frontend or the assigned Edge Cluster.

SR1.6 Collecting Latency Measurements

Status: NOT STARTED

Pending Verification Scenarios:

● [VS1.6.1] The Device Client is able to measure latencies to different Edge
Clusters concurrently with other activities of the Client, to be able to monitor
and make COGNIT aware of the effective latency of the potential Edge Clusters
to be used.

9.2 COGNIT Frontend

SR2.1 COGNIT Frontend

Status: IN PROGRESS

Description: Provides an entry point for devices to communicate with the COGNIT
Framework for offloading the execution of functions and uploading global data.

Completed Verification Scenarios:

● [VS2.1.1] Authenticate a Device against the COGNIT Frontend and verify that
an authorization token is returned.

● [VS2.1.2] Upload application requirements to the COGNIT Frontend and verify
that a unique ID is returned for the application requirements.

● [VS2.1.3] Upload application requirements and query the COGNIT Frontend
for an Edge Cluster and verify that it meets the application requirements.

● [VS2.1.4] Upload a function to the COGNIT Frontend and verify that a unique
ID is returned for that function.

Pending Verification Scenarios:

Version 1.0 12 November 2024 Page 67 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

● [VS2.1.5] Test uploading and downloading data by the device to and from the
COGNIT Frontend.

9.3 Edge Cluster

SR3.1 Edge Cluster Frontend

Status: IN PROGRESS

Description: The Edge Cluster must provide an interface (Edge Cluster Frontend) for the
Device Client to offload the execution of functions and to upload local data that is
needed to execute the function.

Completed Verification Scenarios:

● [VS3.1.1] Instantiate a Serverless Runtime and verify that a device can request
the execution of a function to the Edge Cluster Frontend and assert the result of
the function.

Pending Verification Scenarios:

● [VS3.1.2] Test uploading and downloading data by the device to and from the
Edge Cluster using a secure communication channel.

SR3.2 Secure and Trusted Serverless Runtimes

Status: COMPLETED

Description: The Serverless Runtime is the minimal execution unit for the execution of
functions offloaded by Device Clients.

Completed Verification Scenarios:

● [VS3.2.1] Build a Serverless Runtime image, customised for each Use Case, in an
automated way.

9.4 Cloud-Edge Manager

SR4.1 Provider Catalog

Status: NOT STARTED

Version 1.0 12 November 2024 Page 68 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Description: Implement a backend to persist information about the available providers
that can be used to extend the capacity of the COGNIT infrastructure.

Pending Verification Scenarios:

● [VS4.1.1] Listing the providers belonging to the Provider Catalog.

● [VS4.1.2] Filtering the providers according to a desired latency threshold on a
geographic area.

● [VS4.1.3] Filtering the providers according to a cost per hour threshold.

● [VS4.1.4] Filtering the providers according to energy consumption per hour
threshold.

● [VS4.1.5] Filtering the providers according to some specific hardware
characteristics (e.g. GPUs, Trusted Execution Environments).

SR4.2 Edge Cluster Provisioning

Status: NOT STARTED

Description: The Cloud-Edge Manager must be able to provision Edge Clusters as a set
of software-defined compute, network, storage on any cloud/edge location available in
the Provider Catalogue.

Pending Verification Scenarios:

● [VS4.2.1] A YAML file containing the information about the provision is provided
to the Cloud-Edge Manager that creates a new Edge Cluster.

● [VS4.2.2] Query the Cloud-Edge Manager to return the status of an Edge Cluster
identified by its ID.

● [VS4.2.3] Query the Cloud-Edge Manager to scale up/down the number of hosts
of an Edge Cluster identified by its ID.

● [VS4.2.4] Query the Cloud-Edge Manager to delete an Edge Cluster identified by
its ID.

SR4.3 Serverless Runtime Deployment

Status: COMPLETED

Version 1.0 12 November 2024 Page 69 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Description: The Cloud-Edge Manager must be able to deploy Serverless Runtimes as
Virtualized Workloads within an Edge Cluster.

Completed Verification Scenarios:

● [VS4.3.1] A YAML file containing the information about the deployment is
provided to the Cloud-Edge Manager that creates a new Serverless Runtime.

● [VS4.3.2] Query the Cloud-Edge Manager to return the status of a Serverless
Runtime identified by its ID.

● [VS4.3.3] Query the Cloud-Edge Manager to scale up/down the resources (CPU,
memory and disks) of a Serverless Runtime identified by its ID.

● [VS4.3.4] Query the Cloud-Edge Manager to update the deployment of the
Serverless Runtime identified by its ID.

● [VS4.3.5] Query the Cloud-Edge Manager to delete a Serverless Runtime
identified by its ID.

SR4.4 Metrics, Monitoring, Auditing

Status: IN PROGRESS

Description: Edge-Clusters monitoring, Serverless Runtimes metrics collection and
continuous security assessment.

Pending Verification Scenarios:

● [VS4.4.1] Create an Edge Cluster and deploy a Serverless Runtime and check the
metrics collected for a certain period of time.

SR4.5 Authentication & Authorization

Status: IN PROGRESS

Description: Authentication and authorization mechanisms for accessing cloud-edge
infrastructure resources by the devices for offloading workloads.

Completed Verification Scenarios:

● [VS4.5.1] Test the creation of new users and groups.

Version 1.0 12 November 2024 Page 70 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

Pending Verification Scenarios:

● [VS4.5.2] Assign ACLs to designated users and test the creation of new Edge
Clusters and Serverless Runtimes.

● [VS4.5.3] Communicate with the COGNIT Frontend and the Edge Cluster
Frontend using tokens.

SR4.6 Plan Executor

Status: NOT STARTED

Description: The Plan Executor is responsible for converting plans provided by the
AI-Enabled Orchestrator in Cloud-Edge Manager actions for the life cycle management
of Edge Clusters and Serverless Runtimes.

Pending Verification Scenarios:

● [VS4.6.1] Submit a plan to the Plan Executor for creating new Serverless
Runtimes and verify the deployment of the Serverless Runtimes.

● [VS4.6.2] Submit a plan to the Plan Executor for creating a new Edge Cluster and
verify that the Edge Cluster is created correctly.

● [VS4.6.3] Submit a plan to the Plan Executor for resizing and migrating a
Serverless Runtime.

● [VS4.6.4] Submit a plan to the Plan Executor for increasing the number of hosts
(horizontal scaling) of an existing Edge Cluster.

9.5 AI-Enabled Orchestrator

SR5.1 Building Learning Models

Status: IN PROGRESS

Description: Provide AI/ML models trained with input from collected metrics from the
Cloud-Edge Manager monitoring service related to Edge Clusters and Serverless
Runtimes deployed across the distributed cloud-edge continuum.

Completed Verification Scenarios:

● [VS5.1.1] List instances from Devices to Applications to System for metrics to be

Version 1.0 12 November 2024 Page 71 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

collected.

● [VS5.1.2] Correlate and represent features that are ready to take as input to the
Model.

Pending Verification Scenarios:

● [VS5.1.3] Feedback-aware performance check when training the model on
represented features.

● [VS5.1.4] Assess the ability in terms of AUROC score for each task (e.g.
scheduling).

SR5.2 Smart Management of Cloud-Edge Resources

Status: IN PROGRESS

Description: The AI-Enabled Orchestrator is responsible for the automated
management of cloud-edge continuum resources in order to optimize the performance
of the applications that are offloading functions to the COGNIT Framework.

Pending Verification Scenarios:

● [VS5.2.1] Assess the ability of workload and resource optimization in terms of
cost and performance trade-off.

9.6 Secure and Trusted Execution of Computing Environments

SR6.1 Advanced Access Control

Status: IN PROGRESS

Description: Implement policy-based access control to support security policies on
geographic zones that define a security level for specific areas.

Pending Verification Scenarios:

● [VS6.1.1] Define a security policy that is based on geographic zone attributes.

● [VS6.1.2] Check enforcement of new security policy when edge device moves
closer from one edge node than another.

Version 1.0 12 November 2024 Page 72 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

SR6.2 Confidential Computing

Status: IN PROGRESS

Description: Enable privacy protection for the application workloads at the hardware
level using Confidential Computing (CC) techniques.

Pending Verification Scenarios:

● [VS6.2.1] Deploy a function on a host that provides confidential computing
capability.

● [VS 6.2.2] Check that the function is executed inside the host trusted execution
environment (TEE).

SR6.3 Federated Learning

Status: NOT STARTED

Description: Enhance privacy of AI workloads that have confidentiality requirements
preventing the exchange of information for training. Federated Learning techniques
enable confidential or private data processing under the control of the data owner or
controller, with only learned models shared.

Pending Verification Scenarios:

● [VS6.3.1] Perform training of the ML algorithm without exchanging local data.

● [VS6.3.2] Check that the redistributed models for inference do not contain
private data.

Version 1.0 12 November 2024 Page 73 of 74

SovereignEdge.Cognit–101092711 D5.4 Use Cases - Scientific Report - d

10. Conclusions and Next Steps

On the basis of the first three versions of the Use Cases Scientific Report (Deliverables
D5.1, D5.2 and D5.3), this fourth version provides an overview of the overall status of the
integration of the use cases with the COGNIT Framework. It provides further details about
the research and technology developments that have been achieved by the use cases in
the Third Research & Innovation Cycle (M16-M21). Finally, this report provides an update
on the integration process and infrastructure for the updated version of the integrated
COGNIT software stack, and on the progress of the software requirement verification
tasks per component.

This report complements the Project's global overview provided by Deliverable D2.4, as
well as the component-specific research and development activities reported in
Deliverables D3.3, D3.8, D4.3, and D4.8.

Two more incremental versions of this report will be released at the end of the two
remaining research and innovation cycles (i.e. M27 and M33).

Version 1.0 12 November 2024 Page 74 of 74

