‘ SovereignEDGE .

A Cognitive Serverless Framework for the Cloud-Edge Continuum

D5.11 COGNIT Framework - Demo-b

Version 1.0

23 May 2025

Abstract

COGNIT is an Al-Enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
Continuum that enables the seamless, transparent, and trustworthy integration of data
processing resources from providers and on-premises data centers in the cloud-edge
continuum, and their automatic and intelligent adaptation to optimise where and how
data is processed according to application requirements, changes in application demands
and behaviour, and the operation of the infrastructure in terms of the main environmental
sustainability metrics. This document provides both a demonstration of some of the
capabilities of the COGNIT Framework using the COGNIT testbed hosted by RISE.

‘7& Copyright © 2024 SovereignEdge.Cognit. All rights reserved.

This project is funded by the European Union’s Horizon Europe research and innovation
programme under Grant Agreement 101092711 - SovereignEdge.Cognit

—@®©© This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
AT nternational License.

https://cognit.sovereignedge.eu/

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

Deliverable Metadata

Project Title: A Cognitive Serverless Framework for the Cloud-Edge Continuum

Project Acronym: SovereignEdge.Cognit

Call: HORIZON-CL4-2022-DATA-01-02

Grant Agreement: 101092711

WP number and Title: WP5. Adaptive Serverless Framework Integration and Validation

Nature: DEM: Demonstrator, Pilot, Prototype

Dissemination Level: PU: Public

Version: 1.0

Contractual Date of Delivery: | 31/03/2025

Actual Date of Delivery: 23/05/2025

Lead Author: Thomas Ohlson Timoudas (RISE), Joel Hoglund (RISE)

Authors: Monowar Bhuyan (UMU), Aritz Brosa (lkerlan), Daniel Clavijo (OpenNebula), Marco
Mancini (OpenNebula), Alberto P. Marti (OpenNebula), Idoia de la Iglesia(lkerlan),
Fatima Fernandez (lkerlan), Constantino Vazquez (OpenNebula), Pavel Czerny
(OpenNebula).

Status: Submitted

Document History

Version Issue Date Status' Content and changes
0.1 15/04/2025 Draft Initial Draft
0.2 15/05/2025 Peer-Reviewed Reviewed Draft
1.0 23/05/2025 Submitted Final Version

Peer Review History

Version Peer Review Date Reviewed By
0.2 15/05/2024 Antonio Alvarez (OpenNebula)

Summary of Changes from Previous Versions

This is the first version of Deliverable D5.11

" A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

Version 1.0 23 May 2025 Page 2 of 17

https://cordis.europa.eu/project/id/101092711

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

Executive Summary

This deliverable, D5.11, presents the demonstration of the latest release (3.0) of the
COGNIT Framework, corresponding to COGNIT architecture v2. It demonstrates several
capabilities of the new release of the COGNIT Framework, using 3 scenarios:

1.

3.

Offloading a Function using the COGNIT Device Client: This scenario
demonstrates how to offload a function using the updated COGNIT Device Client,
highlighting the changes in the second version (v2) of the architecture, compared
to the First version. The v2 architecture enhances serverless functionality by
decoupling infrastructure management from application execution, significantly
simplifying function offloading.

Horizontal scaling: The report investigates the scalability of the COGNIT
Framework in response to changes in workload, comparing both reactive and
proactive scaling strategies. The demonstration shows how reactive scaling
responds to increasing CPU usage, highlighting its limitations in handling natural
fluctuations in CPU usage. The demonstration illustrates how proactive scaling
anticipates increases in workload based on historical data, to preemptively
optimize resource allocation and maintain responsiveness.

Workload optimization: The demonstration shows how different scheduling
policies within an Edge Cluster can be used to achieve different goals, for example
maintain CPU balance across hosts or minimize the total energy consumption.

The results presented in this report demonstrate the enhanced flexibility, efficiency, and
adaptive capacity of the COGNIT Framework in dynamic cloud-edge environments.

This deliverable has been released at the end of the Fourth Research & Innovation Cycle
(M27), and will be updated with one more incremental release in M33.

Version 1.0 23 May 2025 Page 3 of 17

SovereignEdge.Cognit-101092711

D5.11 COGNIT Framework - Demo - b

Table of Contents

Abbreviations and Acronyms 5
1. Introduction 6
2. EdgeCluster setup 6
3. Offloading a Function using the COGNIT Device Client 7
4. Scalability 11
4.1 Reactive Scaling Performance 12
4.2 Proactive Scaling Performance 13
5. Workload optimization 14
5.1 CPU Usage Balancing 15
5.2 Energy Consumption Reduction 15
6. Conclusions 17
Version 1.0 23 May 2025 Page 4 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

Abbreviations and Acronyms

Al Artificial Intelligence

IP Internet Protocol

SR Serverless Runtime

VM Virtual Machine

YAML Yaml Ain’t a markup language

Version 1.0 23 May 2025 Page 5of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

1. Introduction

The initial version of the COGNIT Framework Demo (Deliverable D5.10), released in M15,
includes both a demonstration of how to deploy the COGNIT Framework on a target
infrastructure, and a demonstration of the COGNIT Framework in an operational
environment using the COGNIT testbed.

Since there were no substantial modifications to the OpsForge tool, this document
contains only a demonstration of the release 3.0 of the COGNIT Framework, corresponding
to the COGNIT architecture v2.

To show the capabilities of the new release of the COGNIT Framework, we consider the
following 3 scenarios:

1) A Device requesting to offload a function using the new COGNIT client.

2) The scalability of the COGNIT Framework according to changes in the workload (i.e.
number of functions to be offloaded), comparing both reactive and proactive
approaches.

3) The optimization of the workload (i.e. migrations of Serverless Runtimes within an
Edge Cluster) according to different scheduling policies: CPU balance and energy
consumption.

This document is structured accordingly, as follows. Section 2 describes the setup of the
testbed used for the different scenarios. Section 3 shows how to offload a function using
the COGNIT client. Section 4 shows how the COGNIT Framework addresses the scalability
of Serverless Runtimes when there are changes in the workloads, using both a reactive and
proactive approach. Section 5 shows how the workload can be optimized according to
different scheduling policies: CPU balance and energy consumption. Finally, Section 6
concludes the document.

2. EdgeCluster setup

The cluster consists of two hosts: sm07 and sm15, as reported in Table 2.1.

Table 2.1. The characteristics of the hosts related to the Edge Cluster

Host ID Host Name CPUs Memory [GB]
0 sm07 32 1032
1 sm15 256 773

The two hosts present different characteristics in terms of CPU and Energy Consumption.
Figure 2.1 shows the measured power consumption of both hosts, expressed as a function
of CPU usage. The host sm15 has lower power consumption for the same amount of CPU
usage than sm07, as shown in Figure 2.1.

Version 1.0 23 May 2025 Page 6 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

350 7
— smO07

sm1l5s

300

250

200

Power [W]

150 -

100

T T T T
0 50 100 150 200 250
CPU Usage

Figure 2.1. Power consumption comparison for the hosts of the Edge Cluster.

3. Offloading a Function using the COGNIT Device Client

From the Device Client standpoint, unlike in the first version of the architecture, the v2
architecture completely decouples the management of infrastructure from the user
application, giving the system a real serverless behaviour, meaning that the user won't
need to think about the underlying infrastructure to offload the required function. It will
only set certain functional requirements (or App requirements), which will be a secondary
part of the decision-making on the orchestration.

In order to be able to offload a function, the first step is to set the COGNIT instance the
user is willing to work with (in this demo’s case, the Testbed deployed in Luled for
COGNIT). To define a COGNIT instance, it is needed to provide the user’s credentials and
endpoint of the COGNIT Framework. The credentials are provided in a YAML file with the
following structure:

Python

api_endpoint: “address:port”
#Example api_endpoint

Version 1.0 23 May 2025 Page 7 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

#api_endpoint: "https://cognit-lab-frontend.sovereignedge.eu"
credentials: "<user>:<pass>"

#Example credentials

#credentials: "oneadmin:<oneadmin_pass>"

Once the COGNIT instance is defined, it is necessary to provide some requirements to the
COGNIT Framework in order to comply with the user's needs. These requirements are used
by the orchestrator who would need to match them when placing the resources to
perform the execution of the function (in its particular context, that is, on this particular
instance of the Device Client). As of now, the user can set the following application
requirements:

JSON

APP_REQS = {
"FLAVOUR" : "NAME_OF _FLAVOUR",
"MAX_FUNCTION_EXECUTION_TIME": 15.80,
"MAX_LATENCY": 45,
"MIN_ENERGY_RENEWABLE_USAGE": 75,
"GEOLOCATION": "LOCATION_STRING"

}

The Flavour field defines the type of VM on which the user wants to execute the function.
This Flavour allows customizing the function execution environment based on the user
needs, in terms of dependency libraries to be used by the offloaded function, needed
computing resources by this execution (CPU, memory, storage, networking definition). This
Flavour needs to be defined in advance of the execution of the function, and deployed
within the infrastructure that the user is targeting.

On the one hand, the “MAX_FUNCTION_EXECUTION_TIME" parameter should be a soft
limit (based on the policies imposed from infrastructure side) that allows the user to set a
limit for the acceptable time elapsed between the moment that the request to offload a
function is sent from the user application, and the moment it receives the result from the
function.

On the other hand, “MAX_LATENCY" defines the maximum latency expected by the user
to the Edge Cluster where the function will be executed. This is relevant for
network-bound user applications, as it allows the user to specify to the orchestrator a soft
limit for the placement of the Edge Cluster where the function will be executed. It is an
optional requirement.

Linked to the “MAX_LATENCY” field, and as an optional requirement “GEOLOCATION"
specifies the geolocation of the device, it becomes mandatory if the “MAX_LATENCY" field
is set.

Version 1.0 23 May 2025 Page 8 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

Moreover, the “MIN_ENERGY_RENEWABLE_USAGE" allows the wuser setting its
requirements in terms of renewable energy usage in terms of computing resources to be
used when executing the function.

The selected YAML file with the credentials and endpoint is used during the instantiation
of the “DeviceRuntime” class whereas the user requirements are applied using the “init”
method from the resulting “DeviceRuntime” instance. These requirements can be updated
whenever the user wants by using the “update_requirements” function. The following
code lines exemplify this instantiation and initialization of requirements:

Python

Instantiate a device Device Runtime
my_device_runtime = device_runtime.DeviceRuntime("config.yml")
my_device_runtime.init(APP_REQS)

The result of the execution of these lines is the creation of a “my_device_runtime” object.
This object is what is called a context of a Device Client, meaning that it will have a
requirement ID associated within the COGNIT instance specified in the configuration File,
which may change with time, but will be unique for this context until it is terminated:

At this point, the user is able to communicate with the COGNIT Framework with specific
execution requirements. For demonstration purposes let's define a Machine Learning
workload that will have the function to be offloaded:

Python

def ml_workload(x: int, y: int):
import numpy as np
from scipy import stats

Generate some data
x_values = np.linspace(9, y, x)
y_values = 2 * x_values + 3 + np.random.randn(x)

Fit a linear regression model
slope, intercept, r_value, p_value, std_err = stats.linregress(x_values,
y_values)

Print the results
print("Slope:", slope)
print("Intercept:", intercept)
print("R-squared:", r_value**2)
print("P-value:", p_value)

Predict y values for new x values
new_x = np.linspace(5, 15, y)
predicted_y = slope * new_x + intercept

Version 1.0 23 May 2025 Page 9 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

return predicted_y

Using the “call” method of the “my_device_runtime” object the user will be able to offload
this Function with the requirements specifications provided.

Python

Offload and execute ml_workload function
result = my_device_runtime.call(ml_workload, 10, 5)

The output of the execution from the user standpoint may look like this:

Requirements: {'FLAVOUR': 'FlavourV2', 'MAX_FUNCTION_EXECUTION_TIME': 15.0,
"MAX_LATENCY': 45, 'MIN_ENERGY_RENEWABLE_USAGE': 75, 'GEOLOCATION': 'IKERLAN
ARRASATE /MONDRAGON 205600'} UPDATED!

Predicted Y: ret_code=<ExecReturnCode.SUCCESS: ©> res=array([13.64170134,
19.20454152, 24.76738169, 30.33022186, 35.89306203]) err=None
Execution time: 3.608775 seconds

It's important to note the simplicity of the API of the Device Client in comparison to what
was showcased in M15, where v1 of the architecture was showcased.

In the v2 architecture, in order to give the COGNIT's offloading mechanism a pure
serverless behavior, the Device Client has been decoupled into two parts:

- Device Client: Extremely simple API exposed to the user to allow them to offload
functions. That is, by the use of two methods; .init and .call the users are able to perform
the request with their preferences in terms of function execution.

- Device Runtime: All the mechanisms working in the background (in a transparent manner
for the user) so the communication with COGNIT's different elements is done as expected,
so the defined application requirements can be considered correctly by the orchestrator,
and the function and parameters are handled properly within the COGNIT Framework.

This way all the complexity of the actions’ logic is handed over to the Device Runtime, and
the user does not need to take care of anything on the infrastructure side at execution
time of the application.

Version 1.0 23 May 2025 Page 10 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

This same behavior is the one that follows the C version of the Device Client. However in
order to comply with limitations on memory footprint set by the software requirement 1.4
(SR1.4: Low memory footprint for constrained devices, shown in D3.4), some of the
functionalities have been simplified.

4. Scalability

For this scenario, we are considering how the COGNIT Framework reacts to changes in the
workloads (i.e. the frequency of offloaded functions requested) by increasing and
decreasing the number of Serverless Runtimes (i.e. horizontal scaling).

In particular, for this scenario, we compare two different approaches for scaling the
number of Serverless Runtimes of a particular flavor, using CPU usage as the metric:

e Reactive horizontal scaling based only on CPU usage observations.
e Proactive horizontal scaling based on both observations and forecasts of CPU
usage.

To evaluate these approaches, the experimental setup is configured as follows:

e Initial State: The experiment commences with an initial deployment of 1 Serverless
Runtime (SR), equipped with 5 vCPUs.

e Monitoring: The system continuously monitors the CPU usage of these VMs every
10 seconds.

e Proactive Strategy Detail: For the proactive scaling strategy, predictions leverage
a 1-minute forecast horizon.

The core horizontal scaling policy, common to both reactive and proactive evaluations, is
defined by these parameters:

e Trigger Condition: An automatic scale-out operation is initiated if the average CPU
utilisation across the active SRs surpasses 80%. (For a 5-vCPU SR, this means an
average usage equivalent to 4 vCPUs being fully utilized per SR).

e Evaluation Frequency: The trigger condition is assessed every 5 seconds, based on
the average CPU usage across the active SRs.

e Cooldown Period: Following any scaling action, a 30-second cooldown is enforced
to allow system stabilization before further elasticity adjustments can be made.

The workload applied during this scenario is designed to progressively stress the system,
requiring it to dynamically scale out to maintain performance. It features a linear increase
in the frequency of function execution requests over time.

e Load Progression: The stress test begins by generating a certain number of
function requests corresponding to a CPU load of 10%, then incrementally
increases this load in discrete steps of 10%.

e Step Duration: Each load level is maintained for 1 minute before escalating to the
next.

To illustrate the differences between the two scaling strategies, we will examine their
behavior under a common CPU utilization threshold, which is set at 80% of the total

Version 1.0 23 May 2025 Page 11 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

available CPU capacity. This threshold provides a practical buffer against complete
resource saturation.

4.1 Reactive Scaling Performance

The chart below in Figure 4.1 depicts the system's performance under a reactive scaling
policy. With this approach, new Virtual Machines are provisioned only when the actual
average CPU utilization across active VMs surpasses the 80% threshold.

Reactive Scaling: Average Concurrent CPU Usage Over Time

400 +

N ~N w w

=] v =] a

S =] =] o
L

Average CPU Usage

=
v
=}

=
=}
=}

4 —— Average Concurrent CPU Usage
CPU Threshold (400)
----- Scale Event

u
o

o

T T T T T - T
0 200 400 600 800 1000
Elapsed Time (s)

Figure 4.1. Average CPU Usage of 5 vCPU Serverless Runtimes as a function over time
using the reactive scaling strategy

As this chart illustrates, the reactive system effectively responds to increasing load by
adding resources once the predefined CPU limit is breached. However, this inherent delay
means the system might experience periods of high CPU utilization, potentially impacting
responsiveness, before scaling actions take effect. While setting a lower threshold in a
reactive model might seem like an intuitive way to avoid resource saturation by triggering
scaling actions earlier, this approach often leads to premature scaling and, consequently,
overprovisioning. The challenge lies in the reactive system's inherent lack of foresight into
future demand. Consider instead the chart below in Figure 4.2.

Version 1.0 23 May 2025 Page 12 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

Reactive Scaling: Average Concurrent CPU Usage Over Time

350 +

300 4

2504

200 4

Average CPU Usage

100

—— Average Concurrent CPU Usage
50 1 —-- Average CPU Forecast

CPU Threshold (350)
----- Scale Event

T T T T T T T
0 100 200 300 400 500 600
Elapsed Time (s)

Figure 4.2. Illustration of how higher evaluation frequency in a reactive scaling strategy
can trigger premature scaling due to short-lived fluctuations in average CPU Usage

The Average Concurrent CPU Usage (solid blue line) shows natural fluctuations before
sharply rising to cross the CPU Threshold (dashed orange line at 350), triggering a Scaling
Event (vertical red dotted line). This demonstrates how reactive scaling responds
immediately to threshold breaches, even when they might be temporary fluctuations
rather than sustained demand increases.

Importantly, the forecasted CPU usage (dashed green line) remains steady below the
threshold throughout this period. Under a proactive scaling policy, this temporary spike
would not have triggered resource allocation, as the forecast algorithm correctly
identified it as a transient event rather than a sustained trend.

This comparison highlights a fundamental limitation of reactive scaling: without predictive
capabilities, the system must either risk resource saturation with higher thresholds or face
overprovisioning with lower ones. The reactive approach cannot distinguish between
momentary spikes and genuine demand increases, potentially leading to inefficient
resource allocation when temporary threshold crossings trigger unnecessary SR
provisioning.

4.2 Proactive Scaling Performance

The subsequent chart in Figure 4.3 showcases the system's behavior when employing a
proactive scaling strategy. In this model, scaling decisions are driven by forecasts derived
from historical CPU usage patterns and anticipated future demand. A new SR is
instantiated as soon as the predicted CPU usage is projected to exceed the 80% threshold.

Version 1.0 23 May 2025 Page 13 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

Proactive Scaling: Average Concurrent CPU Usage Over Time

Average CPU Usage
= N [W w FS)
v o w [=] [[=]
o [=] o o o o
| |

=
o
=]

—— Average Concurrent CPU Usage
| === Average CPU Forecast

CPU Threshold (400)
----- Scale Event

u
=]

T T T T T T
0 200 400 600 800 1000
Elapsed Time (s)

Figure 4.3. Average CPU Usage of 5 vCPU Serverless Runtimes as a function over time
using the proactive scaling strategy

The proactive approach, as seen in this chart, aims to preemptively adjust resources. By
anticipating load increases, the system can initiate scaling actions before the CPU
utilization actually hits the critical threshold. This anticipatory scaling helps maintain
consistent system responsiveness, minimizing periods of high resource contention and
reducing potential waiting times for function execution. The goal is to more closely match
resource allocation with true demand, leading to a more optimized and efficient use of
resources compared to a purely reactive approach.

5. Workload optimization

In this scenario, we are going to demonstrate how scheduling policies affect the
distribution of the Serverless Runtimes within an Edge Cluster by considering different
criteria: CPU usage and energy consumption.

In order to demonstrate this, we start with the initial state described in Table 5.1 and
shown in Figure 5.1. Four Serverless Runtimes (SR) are allocated on the host sm15, while
smO07 is empty. Each Serverless Runtime requests 2 GB of memory. Two SRs are large (IDs
352 and 353) and need 64 CPU cores each. One mid-size SR (ID 354) requires 14 CPU cores
and one small SR (ID 355) needs 2 CPU cores. In this experiment, the CPU usage of each SR
is approximately equal to its requested number of CPU cores.

Table 5.1. Properties and initial allocation of the SRs.

SR ID Requested Memory | Requested CPU Cores Current Allocation
[GB] [-] (Host name)
352 2 64 sm15

Version 1.0 23 May 2025 Page 14 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

353 2 64 sm15
354 2 14 sm15
355 2 2 sm15

Name P

SR Nature-355 172.21.0.103 +1 More

SR Nature-354 172.21.0.102 +1 More

SR Nature-353 172.21.0.101 +1 More

SR Nature-352 172.21.0.100 +1 More

Figure 5.1. Initial allocation of the SRs.

5.1 CPU Usage Balancing

With the CPU usage balancing policy, the Al-Enabled Orchestrator will aim to keep CPU
utilization as balanced as possible across the hosts. To accomplish this, we set the
Al-Enabled Orchestrator to use as scheduling policy the CPU balancing.

In order to balance the cluster according to the CPU usage, the Al-Enabled Orchestrator
migrates the mid-sized SR 354 to the host sm07, as shown in Figure 5.2.

Name IP

SR Nature-355 172.21.0.103

SR Nature-354 172.21.0.102

SR Nature-353 172.21.0.101 +1 More

SR Nature-352 172.21.0.100 +1 More

Figure 5.2. SR allocation after applying the CPU balancing policy

5.2 Energy Consumption Reduction

If we want to apply the energy saving policy to the running SRs, we need to set the
Al-Enabled Orchestrator policy to energy saving, and then run the optimization.

Version 1.0 23 May 2025 Page 15 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

In this case, the solution will be different, and all SRs will be allocated to the host sm15, i.e.
the SR with the ID 354 should migrate back to sm15. This is because sm15 is more energy
efficient than sm07 and has enough capacity to host all the SRs at the same time.

Figure 5.3 shows the result of applying the energy saving policy.

Name IP

SR Nature-355 172.21.0.103 +1 More

SR Nature-354 172.21.0.102 +1 More

SR Nature-353 172.21.0.101 +1 More

SR Nature-352 172.21.0.100 +1 More

Figure 5.3 SRs allocation after applying the energy saving policy

Version 1.0 23 May 2025 Page 16 of 17

SovereignEdge.Cognit=101092711 D5.11 COGNIT Framework - Demo - b

6. Conclusions

This document demonstrates the capabilities of the release 3.0 of the COGNIT Framework,
related to the COGNIT Architecture v2.0, according to different scenarios: offloading a

function from a device, scalability of the framework according to changes in the frequency
and load of function requests, and optimization of the Serveless Runtime workloads within
an Edge Clusters due to different scheduling policies (cpu usage and energy consumption).

Version 1.0 23 May 2025 Page 17 of 17

	
	Abbreviations and Acronyms
	1. Introduction
	2. EdgeCluster setup
	3. Offloading a Function using the COGNIT Device Client
	4. Scalability
	4.1 Reactive Scaling Performance
	4.2 Proactive Scaling Performance

	5. Workload optimization
	5.1 CPU Usage Balancing
	5.2 Energy Consumption Reduction

	
	6. Conclusions

