‘ SovereignEDGE e

A Cognitive Serverless Framework for the Cloud-Edge Continuum

D4.4 COGNIT Serverless Platform -
Scientific Report-d

Version 1.0

30 April 2025

Abstract

COGNIT is an Al-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
Continuum that enables the seamless, transparent, and trustworthy integration of data
processing resources from providers and on-premises data centres. The continuum and
their automatic and intelligent adaptation to optimise where and how data is processed
according to application requirements, changes in application demands and behaviour, and
the operation of the infrastructure in terms of the main environmental sustainability
metrics. This document describes the research and development carried out in WP4
“Al-enabled Distributed Serverless Platform and Workload Orchestration” during the
Fourth Research & Innovation Cycle (M22-M27) according to the new COGNIT architecture
(see details in D2.4), providing details on the status of a number of key components of the
COGNIT Framework (i.e., Cloud-Edge Manager and Al-Enabled Orchestrator) as well as
reporting the work related to supporting Energy Efficiency Optimization in the
Multi-Provider Cloud-Edge Continuum.

‘S/ﬁ Copyright © 2024 SovereignEdge.Cognit. All rights reserved.

This project is funded by the European Union’s Horizon Europe research and innovation
programme under Grant Agreement 101092711 - SovereignEdge.Cognit

@@@@ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
DM |nternational License.

https://cognit.sovereignedge.eu/

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Deliverable Metadata

Project Title: A Cognitive Serverless Framework for the Cloud-Edge Continuum

Project Acronym: SovereignEdge.Cognit

Call: HORIZON-CL4-2022-DATA-01-02

Grant Agreement: 101092711

WP number and Title: WP4. Al-enabled Distributed Serverless Platform and Workload Orchestration
Nature: R: Report

Dissemination Level: PU: Public

Version: 1.0

Contractual Date of Delivery: | 31/03/2025

Actual Date of Delivery: 30/04/2025

Lead Author: Monowar Bhuyan (UMU) & Paul Townend (UMU)

Authors: Yashwant Singh Patel (UMU), Adil Bin Bhutto (UMU), Rohail Gulbaz (UMU), Malik

Bouhou (CETIC), Aritz Brosa (lkerlan), David Eklund (RISE), Javad Forough (UMU),
Idoia de la Iglesia (Ikerlan), Ivan Valdés (lkerlan), Fatima Fernandez (lkerlan),
Carlos Lopez (ACISA), Tomasz Korniluk (Phoenix), Johan Kristiansson (RISE),
Antonio Lalaguna (ACISA), Marco Mancini (OpenNebula), Philippe Massonet
(CETIC), Nikolaos Matskanis (CETIC), Mikel Irazola (Ikerlan), Alvaro Puente
(Ikerlan), Juan José Ruiz (ACISA), Kaja Swat (Phoenix), Thomas Ohlson Timoudas
(RISE), Ivan Valdés (lkerlan), Cristina Cruces (lkerlan), Martxel Lasa (lkerlan), Victor
Palma (OpenNebula), Michal Opala (OpenNebula), Jakub Walczak (OpenNebula),
Carlos Moral (OpenNebula), Aitor Garciancia (Ikerlan), Francesco Renzi (Nature
4.0), Riccardo Valentini (Nature 4.0)

Status: Submitted

Document History

Version Issue Date Status'’ Content and changes
0.1 22/04/2025 Draft Initial Draft
0.2 24/04/2025 Peer-Reviewed Reviewed Draft
1.0 30/04/2025 Submitted Final Version

Peer Review History

Version Peer Review Date Reviewed By
0.2 24/04/2025 Idoia de la Iglesia (Ikerlan)
0.2 24/04/2025 Antonio Alvarez (OpenNebula)

Summary of Changes from Previous Versions

First Version of Deliverable D4.4

" A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

Version 1.0 30 April 2025 Page 2 of 65

https://cordis.europa.eu/project/id/101092711

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Executive Summary

This is the fourth “COGNIT Serverless Platform - Scientific Report” that has been produced
in WP4 “Al-enabled Distributed Serverless Platform and Workload Orchestration”. It
describes in detail the progress of the software requirements that have been active during
the Fourth Research & Innovation Cycle (M22-M27) in connection with these main
components of the COGNIT Framework:

Cloud-Edge Manager

SRA4.6 Plan Executor:

Plan Executor is responsible for the execution of plans produced by the
Al-Enabled Orchestrator related to the placement and migration of Serverless
Runtimes within an Edge Cluster.

Al-Enabled Orchestrator

SR5.1 Building Learning Models:

Provide Al/ML models based on collected metrics from the Cloud-Edge
Manager monitoring service related to Edge Clusters, Serverless Runtimes, and
infrastructure usage.

SR5.2 Smart management of Cloud-Edge resources:

Al-Enabled Orchestrator is responsible for managing and optimizing the
lifecycle of Edge Clusters and serverless runtimes within Edge Clusters
according to the application requirements, infrastructure and virtual resource
usage, and energy-aware policies.

This deliverable has been released at the end of the Fourth Research & Innovation Cycle
(M27). The Final version, D4.5, to be released in M33, will be a standalone document
including the results of the Five research cycles.

Version 1.0

30 April 2025 Page 3 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Table of Contents

Abbreviations and Acronyms 5
1. Cloud-Edge Manager
1.1 [SR4.6] Plan Executor 7
2. Al-Enabled Orchestrator 10
2.1 [SR5.1] Building learning models 10
2.2 [SR5.2] Smart Management of Cloud-Edge Resources 25
3. Conclusions and future work 61
References 63

Version 1.0 30 April 2025 Page 4 of 65

SovereignEdge.Cognit-101092711

D4.4 COGNIT Serverless Platform - Scientific Report - d

Abbreviations and Acronyms

ADWIN Adaptive windowing
AE Auto Encoder
Al Artificial Intelligence
Al-O Al-Enabled Orchestrator
API Application Programming Interface
ARUR Average Resource Utilization Ratio
CLI Command Line Interface
CMA Carbon-aware Model Agent
CPCA Common Principal Component Analysis
CspP Cloud Service Provider
DB Database
DCs Data Centres
DL Deep Learning
DTW Dynamic Time Warping
EC Energy Consumption
EP Energy Provider
EVPN Ethernet VPN
Faas Function as a Service
FFNN Feed-Forward Neural Network
GC Global Controller
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise
HRUR Host Resource Utilisation Ratio
HTTP Hypertext Transfer Protocol
HVMC Host-VM Combination
IDEC Improved Deep Embedded Clustering
ILP Integer Linear Programming
IP Internet Protocol
IPAM IP Address Management
JSON Javascript Object Notation
KVM Kernel Virtual Machine
LC Local Controller
LSTM Long Short-Term Memory
Version 1.0 30 April 2025 Page 5 of 65

SovereignEdge.Cognit-101092711

D4.4 COGNIT Serverless Platform - Scientific Report - d

MAPE-K Monitoring, Analysis, Planning, Execution, and Knowledge
Mi Million Instructions
MIPS Million Instructions Per Second
ML Machine Learning
MOGA Multi-Objective Genetic Algorithm
MSE Mean Squared Error
MTS Multivariate Time Series
NSGA-II Non-dominated Sorting Genetic Algorithm II
(01 Operating System
PDN Power Distribution Network
PH Page-Hinkley
PSRs Power Source Regions
QoS Quality of Service
RAE Relative Absolute Error
RAPL Running Average Power Limit
REST Representational State Transfer
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
ROCKET Random Convolutional Kernel Transform
RUR Resource Utilization Ratio
SGD Stochastic Gradient Descent
SLA Service Level Agreement
SLO Service Level Objective
SoC State of Charge
SPEA?2 Strength Pareto Evolutionary Algorithm 2
SRTs Serverless Runtimes
SVD Single Value Decomposition
TCN Temporal Convolutional Network
VM Virtual Machine
Version 1.0 30 April 2025 Page 6 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

1. Cloud-Edge Manager

The Cloud-Edge Manager is responsible for autonomous management of distributed
cloud-edge continuum resources according to the application demand and availability of
resources. This development cycle has made progress related to the SR4.6 software
requirement (i.e. Plan Executor) that allows the execution of plans produced by the
Al-Enabled Orchestrator related to the placement and migration of Serverless Runtimes
within an Edge Cluster. Details of each software requirement are reported in Deliverable
D2.5.

1.1 [SR4.6] Plan Executor

Description

The Cloud Edge Manager has been enhanced by integrating new components that have
been developed in OpenNebula in the context of the European Project IPCEI-CIS
(Important Project of Common European Interest on Next Generation Cloud Infrastructure
and Services), which has co-funded such developments. In particular, we have integrated in
the COGNIT Framework the new scheduler architecture of OpenNebula, including the Plan
Executor and the Scheduler Manager. The Plan Executor allows the execution of plans by
performing actions (e.g. deploy, migrate, poweroff, etc...) related to the Serverless
Runtimes within an Edge Cluster. The plans are produced by the Al-Enabled Orchestrator
that has been integrated within the Cloud-Edge Manager according to the architecture
reported in Figure 1.1.

The Scheduler Manager interacts with the Al-Enabled Orchestrator to produce placement
and optimization plans. The Al-Enabled Orchestrator optimization algorithms have been
integrated by implementing new drivers that are used by the Scheduler Manager for
placement and workload balancing of Serverless Runtime within an Edge Cluster.

The Plan Executor executes the plans produced by the Scheduler manager using the
Al-Enabled Orchestrator drivers.

Version 1.0 30 April 2025 Page 7 of 65

https://ec.europa.eu/commission/presscorner/detail/en/ip_23_6246

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Cloud Edge Manager

Plan Executor Scheduler Manager
Executes plans Controls scheduler drivers

1

OpenNebula DB
(stores plans)

Al-Enabled Orchestrator
produces plans

Figure 1.1: Scheduler Architecture

The plans are produced by the Al-Enabled Orchestrator according to the following XML

schema:
Table 1.1: XML schema for plans produced by the Al-Enabled Orchestrator

XML PATH Description

ID ID of the cluster the plan applies to.

ACTION/
VM_ID ID of the Serverless Runtime the action applies to.
OPERATION Serverless Runtime operation (deploy, migrate, poweroff).
HOST_ID Host ID where for deploy and migrate operations.

Example of a plan produced by the Al-Enabled Orchestrator is reported below:

<PLAN>

<ID>2</ID>

<ACTION>
<VM_ID>23</VM_ID>
<OPERATION>deploy</OPERATION>
<HOST_ID>12</HOST_ID>

</ACTION>

<ACTION>
<VM _ID>24</VM_ID>
<OPERATION>migrate</OPERATION>
<HOST_ID>15</HOST_ID>

</ACTION>

Version 1.0 30 April 2025

Page 8 of 65

SovereignEdge.Cognit=101092711

D4.4 COGNIT Serverless Platform - Scientific Report - d

<ACTION>
<VM_ID>25</VM_ID>
<OPERATION>poweroff</OPERATION>
</ACTION>
</PLAN>

Version 1.0

30 April 2025

Page 9 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

2. Al-Enabled Orchestrator

The Al-Enabled Orchestrator (Al-O) enables multiple Features for smart management of
distributed cloud-edge resources, including:

e Determining optimal number of serverless runtimes,

e Generating initial placement plan, and

e Optimizing resource allocation in the cloud-edge continuum.

More detailed description about the Al-Enabled Orchestrator is available in earlier
Deliverable report D4.3. This development cycle makes progress on the learning models to
categorize different resource utilization metrics, model retraining and improving AlOps
pipeline for training, validation and model repository integration. Additionally, ongoing
efforts Focus on developing multi-objective evolutionary algorithms and advancing
energy-aware continuum systems modelling, with validation conducted in simulated
environments. These advancements contribute to optimizing resource management and
sustainability in the cloud-edge continuum.

2.1 [SR5.1] Building learning models
In this development cycle, the AI-O has been implemented, with a specific focus on
developing Al/ML models for unsupervised workload classification and model retraining.

2.1.1 Al/ML Models

Recent efforts (particularly using real workload traces such as Google Cluster [19],
Microsoft Azure [32], PlanetLab [33], Bitbrains trace [34], and the Alibaba cluster [35])
have advanced workload modeling significantly - however, metrics generated by
monitoring tools typically do not provide labeled data. To address this, unsupervised
learning methods are useful, enabling models to learn directly from the data without
requiring prior labels.

As part of Al/ML model development, The AI-O can leverage two types of clustering
models for classifying the workloads: 1) classical K-means clustering, and 2) Deep K-means
clustering.

1) Classical K-means Clustering: The classical K-means algorithm operates directly on the
normalized input features extracted from the workloads. The clustering process begins
with loading and pre-processing datasets from various clusters. Key resource features such
as GPU utilization, memory utilization, and energy consumption are extracted and
standardized to ensure uniform scaling. K-means iteratively partitions the feature space
into K clusters by minimizing the squared Euclidean distance between data points and
cluster centroids.

2) Deep K-means Clustering: To improve clustering accuracy, we incorporate deep feature
learning using an autoencoder. The Deep K-means approach optimizes both reconstruction

Version 1.0 30 April 2025 Page 10 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

loss and clustering loss simultaneously to learn meaningful latent representations. This
enhances the separation of workloads in a lower-dimensional latent space.

2.1.2 Data
These models have been developed, tuned, validated and integrated with the AlOps
pipeline in COGNIT using synthetic, simulated, and real-world datasets.

1) Synthetic dataset: To generate the synthetic dataset, a probabilistic cumulative
modeling is adopted; which is based on probabilistic models which capture cumulative
properties of real-world data distributions. Compared to the real-world dataset, the
synthetic dataset introduces more significant variations in resource utilization patterns
(e.g., GPU usage, memory usage, CPU usage, and energy usage) and carbon emissions
(g-CO2eq/kWh).

2) Simulated dataset: Discrete-event simulators [3] are tools designed to simulate complex
systems where events occur at specific points in time, triggered by predefined conditions,
such as the scheduling of FaaS requests or the deployment of virtual machines. The
proposed framework is evaluated using ContinuumSim [4], an open-source discrete-event
simulator developed collaboratively by RISE and Umea University in the COGNIT project.
ContinuumSim is specifically designed to facilitate the implementation and
experimentation of Continuum schedulers, e.g., carbon-aware schedulers. Renewable
energy sources are modeled using real-world data to accurately capture fluctuations in
green energy availability, leveraging carbon intensity data obtained from Electricity Maps
[5]. Real-world workloads were obtained from the MIT Supercloud dataset [6], providing
realistic usage patterns. By replaying the workloads in a certain order, it becomes possible
to evaluate different scheduling algorithms under varying workload demands and carbon
intensity scenarios. Finally, we introduce randomized cloud costs, ranging from €2 to €4
per GPU/h, across different clusters. Clusters powered by greener energy sources were
assigned slightly higher costs, thus creating a deliberate trade-off between reducing
carbon intensity and operational expenses. Figure 2.1 provides an overview of the
simulator.

o » H

Workload | ContinuumSim

Traces Scheduler —
‘-._,___'___,_J

Generated
Cluster Config Dataset

i

Carbon |,

Traces Workload Log

Figure 2.1: Simulator overview.

3) Real-world FaaS dataset: For the function arrival rate prediction, we adopt Globus
Compute [7], a function-as-a-service (FaaS) dataset, which is a federated platform enabling
users to deploy endpoints across edge devices to HPC clusters and invoke Python

Version 1.0 30 April 2025 Page 11 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

functions via a cloud-hosted service. The dataset includes 2.1 million tasks from 252 users
executed on 580 endpoints, and comprises 277,000 registered functions. It reveals
patterns seen in other FaaS datasets that includes user workloads, distributed computing
endpoints, and investigation of registered function bodies.

2.1.3 Results and Analyses

In this part, we evaluate the performance of two clustering approaches- Classical K-means
and Deep K-means. The clustering results are visualized in 2D and 3D spaces to
demonstrate the separation achieved by each approach.

1) Classical K-means Clustering

2D Clustering (Figure 2.2): With K = 2, the classical k-means clustering algorithm
effectively separates workloads into two distinct clusters based on GPU and
memory utilization. These clusters highlight processes with low vs. high resource
demands, offering beneficial information for workload prioritization and resource

scheduling.
K-Means Clustering (K=2)
100 <
L)
%o ™ e
L] ™
C 4 L)

/ & o
= ® ® -
_‘E 60 - ’.] -
E‘ © * '. il
£ 404 - - - =
k5 N et L | oS W

. e 30" o® - °
sl ay T OIHE por, . =
" ". :. .p..‘o -« P ®
"o B] .x e ° ° e ® o e -
- - = “oo o -
° T - o® o ® é
o 20 80 100

4(%PU Utilizatiozo
Figure 2.2: K-Means 2D clustering.

3D Clustering (Figure 2.3): When extended to K = 3 in 3D space, the clustering
includes energy consumption as an additional dimension. This reveals finer
distinctions, identifying clusters dominated by low, moderate, and high
energy-consuming workloads, which are crucial for energy-aware workload
management.

Version 1.0 30 April 2025 Page 12 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

K-Means Clustering (K=3, n_init=10)

Figure 2.3: K-Means 3D clustering

2) Deep K-means Clustering:

Latent Space Learning: An autoencoder compresses input features into a latent
space of dimension d = 3 while retaining the essential structure of the data. A
clustering loss ensures that latent representations align closely with the learned
cluster centers during training, providing improved feature separation.

2D Clustering (Figure 2.4): With K = 2, Deep K-means identifies distinct clusters in
the latent space. Compared to classical K-means, the learned latent features exhibit

clearer separations, demonstrating the benefits of deep feature extraction.

Deep K-Means Clustering (Latent Space, 2D)

P ® Cluster1
® Cluster2

- L3
S o°
—0.05 | - E 3

—0.10 -

—0.15

Latent Dim 2

—0.20

—0.25

—0.70 —0.65 —0.860 —0.55 —0.50 —0.45 —0.40 —0.35 —0.30
Latent Dim 1

Figure 2.4: Deep K-Means 2D clustering.

3D Clustering (Figure 2.5): For K = 3, Deep K-means achieves superior separation of
workloads into three clusters in the latent space. The clusters are well-defined,
with reduced overlap between processes, enabling more accurate workload
profiling and optimization.

Version 1.0 30 April 2025 Page 13 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Deep K-Means Clustering (Latent Space)

- Cluster 1
- Cluster 2
- Cluster 3

Figure 2.5: Deep K-Means 3D clustering

3) Analysis of Results: Figures 2.2, 2.3, 2.4, and 2.5 compare the results of classical
K-means and Deep K-means clustering. As illustrated, Deep K-means clustering
significantly enhances the separation of workloads by leveraging deep feature
learning. The latent representations reduce noise and redundancy in the input
features, leading to tighter and more distinguishable clusters. By grouping
workloads with similar resource demands, the system can prioritize critical
processes and minimize contention. Moreover, the comparison highlights the
advantages of Deep K-means over classical K-means in terms of cluster separation
and interpretability.

2.1.4 Retraining method For ML-based predictive behavioral forecasting

Autonomous resource management is essential for large-scale cloud data centres, where
Machine Learning (ML) enables intelligent decision-making. However, shifts in data
patterns within operational streams pose significant challenges to sustaining model
accuracy and system efficiency. Through COGNIT, we propose an auto-adaptive ML
approach to mitigate the impact of data drift in cloud systems, published in [11]. In this
work, a knowledge base of distinct time series batches and corresponding ML models is
constructed and clustered using the Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN) algorithm. When model performance degrades, the
system uses Dynamic Time Warping (DTW) to retrieve matching hyper-parameters from
the knowledge base and apply them to the deployed model, optimizing inference accuracy
on new data streams.

a) Time series matching-based auto-adaptive ML model
Figure 2.6 provides an overview of the Auto-adaptive ML approach based on time
series matching, featuring its two main components: the Knowledge Base and the
Time Series Matching Mechanism. Essentially, the approach involves building a
knowledge base containing various time series data batches, each associated with a
ML model trained on that specific batch. When the deployed ML model experiences

Version 1.0 30 April 2025 Page 14 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

performance degradation, the system uses the matching mechanism to find the
recent time series batch that best matches one in the knowledge base, thereby
invoking the most appropriate ML model.

.. New Time series batch

4 b
oy
Input
M2 ML model to deploy
@ M1 v —
¢ ® Input Output “o
. ., Time series | P e ©°
/7_; - Matching '
) @ (Xt, yt) Mechanism
@ ow
l:(Xt, vi) Knowledge
e Base .

Figure 2.6: The overview of Auto-adaptive ML approach based on time series matching.

a1. Building Knowledge Base

This is an offline process that can be performed periodically to ensure it remains up
to date. Figure 2.7 depicts the flow of this process. The first step involves collecting
time series batches from the historical dataset, ensuring each batch has distinct
characteristics and patterns. To achieve this, we apply data drift detection to
segment the data at drift points, using a combination of two popular methods:
Adaptive Window (ADWIN) [12] and Page-Hinkley (PH) [13].

1) ' 2)
Drift Detection i
- - ‘Model N
s (Xt yt): Jl‘ Training |~ |
Q
(X, yt)] (Xk, yk) " (Xm, ym)
Historical Data
3) —
_+/ FROCKET . :
(Xt yt) ¥ Transformer - (Xt vy
'HDBSCAN
! |
Xty (Xkyk) (Xm,ym)
M3 L M1 M2

Figure 2.7: Step by step process of building the knowledge base.

After obtaining the time series batches, the next step is to train different ML
models on each batch and save the corresponding hyperparameters for future use.
All time series batches in the knowledge base form a search space for future time
series matching. However, without efficient clustering or classification, the
matching process can be highly time-consuming, as it must sequentially evaluate
each batch - leading to a brute-force search with a complexity of O(N), where N is

Version 1.0 30 April 2025 Page 15 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

the number of time series batches in the knowledge base. To narrow the search
space, we segment the knowledge base using HDBSCAN algorithm [25]. Assuming
an average cluster size of N/k, where k is number clusters, the complexity is
reduced to O(k+N/k).

The advantage of HDBSCAN compared to other clustering methods (e.g.,
partitioning clustering methods, density-based clustering methods) is that it
creates a hierarchy of clusters based on the density of data points, allowing the
algorithm to identify clusters of varying shapes and densities without needing to
specify the number of clusters in advance. This is particularly valuable when
building (and updating later) the knowledge base, as the evolving and
unpredictable nature of cloud operational data makes it difficult to determine
cluster sizes in advance.

To ensure efficient HDBSCAN clustering and better identification of coherent
clusters, it is crucial to extract significant Features such as trends, periodicity, and
noise from the time series batches. For this, we use the Random Convolutional
Kernel Transform (ROCKET) [14], a highly efficient and fast method for
transforming time series data, which minimizes computational overhead.

a2. Time series Matching Mechanism

To measure the similarity between time series batches, we utilize the advantages
of DTW. Unlike other methods that are highly sensitive to noise and temporal
distortions (e.g., Euclidean distance), DTW can handle time shifts and varying
lengths, making it well-suited for evolving time series data in the knowledge base.

Giving two time series X = (X X0 o X), andY = Wy Yy o Vs with lengths n

2’
and m respectively, the DTW algorithm calculate the DT W (X, Y) through the

following procedure:

e Initialize:
D(1,1) = d(x,.y,) where d(x y) = (x, = ¥)’
e Fill the Cost Matrix:
Forrowi=1:D(1) = d(xl,yj)+D(1, j-Dwithj=2,3,..., m.
For column j=1:D(i,1) = d(x,y)+D(i-1, 1) withi=2,3,...,n.
e Recurrence Relation:
For the remaining elements, compute D(i,j) = d(xi,y],)+min{D(i-1,),D(, j-1),
D(i-1,j-1)} withi=2,3,...,nandj=2,3,..., m.
e Calculate DTW Distance:
DTW(X, Y) = D(n,m) .

To this end, the procedure for automatic adaptation of the deployed ML model is
presented in Algorithm 1 (Figure 2.8). The deployed model’s performance is
continuously monitored to ensure that the average prediction accuracy exceeds a

Version 1.0 30 April 2025 Page 16 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

specified threshold (e.g., accu_thresh = 80%). If the model’s performance falls
below this threshold over a predefined period (line 4), it triggers the need for
model adaptation.

Algorithm 1 Auto-Adaptive ML Model with Time Series
Clustering

1: Imput: dist_thresh, accu_thresh

2: while True do

3: Evaluate P(\t)

4 if S M P(t) < accu_thresh then

5: Cluster_rep < Best-matching cluster for 7}y

6: if DTW (Cluster_rep, Thew) < dist_thresh then

7: best_match <— Closest series in Cluster_rep via
DTW

8: end if

9: if best_match # None then

10: break

11: else

12: Update knowledge base and train with Ty

13: end if

14: end if

15: end while

16: Output: Model corresponding to best_match

Figure 2.8: Algorithm for automatic adaptation of the deployed ML model

The update process begins by matching the current inference time series batch,
T . containing data from the previous update to the present, with the cluster

representatives stored in the knowledge base (line 5). If a representative with a
DTW distance below the threshold dist_threshis found (line 6), the search proceeds
within the corresponding cluster (line 7).

If a best match is identified, the algorithm retrieves the hyper-parameters
corresponding to the best match batch and deploys the updated ML model for
future inferences (line 9-10, line 16). If no match is found, the system continues
using the current ML model while incorporating L into the knowledge base and

training a new model (line 11-13).

Here, the value of dist_threshis derived from the average intra-cluster distance and
the average inter-cluster distance, both of which are calculated offline during the
process of building the knowledge base. More specifically, for a cluster C, with n,

members, the intra_distk is calculated as:

n n

k k
. o 1
intra_dist, = e E”:Eijﬂ DTW(X, Xj)

Version 1.0 30 April 2025 Page 17 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

b)

where XL, and XL,], are time series within cluster Ck; and the inter-cluster distance,

intra_distk y is calculated as:

e

intra_dist = —— DTW(X, Y
intra_dist, , o i§1j§1 X,)

where Xl, e Ck and Y,- e Cl.
The distance threshold, dist_thresh, is then defined as:

1

Ic1del-n 2

dist_thresh = a XLZ intra_distk + B x
CeC C, CeC, kl

intra_dist
[C] - k,l

where Cis the set of all clusters; a, B are weights that can be adjusted based on the
specific context of preference. For simplicity and to maintain neutrality between
intra-cluster and inter-cluster distances, we set the weights equally in the
experiment below, with a = =0.5.

ML-Based Prediction

b1. Workload prediction

In this experiment, we use real operational data traces from Wikipedia [15], [16] to
simulate a real cloud system and its streaming operational data. We then develop a
workload prediction model using the well-known time series prediction technique
Long Short-Term Memory (LSTM) [17] to forecast the incoming workload.

b1.1 Wikipedia trace.

Wikipedia trace represents 10% of HTTP requests to Wikipedia projects from
19/09/2007 to 31/12/2013, initiated by front-end proxy caches and aggregated
hourly with a unique ID, timestamp, and request count. The Arabic Wikipedia trace
is used for the experiment due to its various data drifts [18]. The First 20,000 data
points from the trace are used for the initial training of the prediction model and
serve as the historical operational data for building the knowledge base. The
initially trained ML model is deployed to predict the incoming workload starting
from data point 20,001, while the proposed auto-adaptive ML method is applied
simultaneously to maintain the robustness of the deployed prediction model.
Therefore, the remaining Wikipedia trace from data point 20,001 is used to
evaluate both the accuracy of the ML model and the efficiency of the proposed
auto-adaptive ML method.

b1.2 LSTM-based workload prediction.

The model consists of two LSTM layers with 128 and 32 units, respectively,
processing input sequences of shape (10, 1). A dropout layer with a rate of 0.3 is
added to prevent overfitting. The final dense layer with 1 unit outputs the
predicted value for the next time step. At each time slot t, the model predicts the
number of requests at t + 1.

b2. CPU utilization prediction

Version 1.0 30 April 2025 Page 18 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

In this experiment, we build a resource utilization prediction model using real trace
data from the Google cluster. The model employs SGDRegressor algorithm to
predict incoming CPU utilization For a machine in the Google data centre.

b2.1 Google cluster trace

The Google cluster trace [19] includes runtime traces for 12,500 physical machines
(PMs) and over 650,000 jobs, with resource utilization (CPU and memory) recorded
every 10 seconds, starting from 01/05/2011. For our experiment, we use the
processed data from [20], which aggregates CPU and memory utilization in
5-minute intervals per machine over a 24-hour period. The dataset, extracted from
the first 10 days, filters CPU and memory utilization between 5% and 90%. We
reserve the first 2 day's data points to train the initial CPU utilization prediction
model and to build the knowledge base for this experiment. The remaining data
(more than 2,000 data points over 8 days) is used to evaluate the performance of
the ML model and the efficiency of the auto-adaptive ML method.

b2.2 SGDRegressor-based CPU utilization prediction

The SGDRegressor model [21] is a linear regression model optimized using the
Stochastic Gradient Descent (SGD) algorithm. At each iteration, the algorithm
selects a small, randomly chosen subset of data to calculate the gradient of the loss
function, then updates the model's parameters. This makes SGD particularly
efficient for large datasets and online learning, where the model can be
continuously updated with new data, making it ideal for large-scale applications
like CPU utilization prediction [22].

SGDRegressor supports various loss functions and penalties for fitting linear
regression models. To implement the CPU utilization prediction, we employ the
squared epsilon insensitive loss function [23], which is robust to small deviations
and emphasizes significant errors. We configure the model to take input in the
shape (10, 1), meaning it looks back 10 time steps to predict CPU utilization for the
next time step, t + 1.

Baseline Approaches for Adapting ML Models

c1. Incremental retraining

This is a widely used approach in the literature to address the degradation of
deployed ML models, based on the premise that the most recent data best reflects
the characteristics of the operational data stream. It involves periodically retraining
ML models as new data becomes available. To implement this approach, we retrain
the deployed ML model as follows: After every 1-day interval, when a new data
batch becomes available, the model is retrained using the dataset that incorporates
the most recent data batch. Intuitively, if the incoming operational data follows
patterns similar to the recently observed data, this retraining approach is expected
to improve the performance of the ML model.

c2. Drift detection based retraining

Version 1.0 30 April 2025 Page 19 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

d)

To reduce the retraining frequency, many studies use data drift detection methods
to detect the changes in the operational data streams, from which to trigger the
retraining to update accordingly [27], [28]. We implement a similar baseline
retraining strategy, employing the well-known data drift detection method,
ADaptive WINdowing (ADWIN) [12], which has proven effective in minimizing both
false positive and false negative rates, particularly in one-dimensional data [24]. A
challenge with concept drift-based retraining methods is determining the
appropriate data for retraining. In the Wikipedia workload prediction experiment,
the retraining dataset consists of 672 data points following the drift point, as
observed in [27]. Conversely, in the Google CPU utilization prediction experiment,
the retraining dataset is constructed by including data from the previous retraining
point up to the current drift point detected by the data drift mechanism, along with
an additional recent data batch covering a 1-day interval after the drift point

Evaluation Metrics

d1. ML resilience level

We evaluate the efficacy of the proposed method by analyzing its impact on
maintaining the high performance of the ML model throughout the experiment.
This involves computing the prediction error of the ML model at each time point,

indicated by the relative absolute error (RAE), calculated as RAE = Axredicty. real]

y_real

and observing the evolution of its performance over time.

d2. Overhead cost

Given that the retraining process incurs significant costs (e.g., training resources
and data management), we abstract these overhead costs into the frequency of
retraining invocations and evaluate the efficiency of the retraining framework
accordingly.

d3. Scalability

In large-scale cloud systems, which typically generate millions of operational data
points per time unit, the decision time for updating or retraining the deployed ML
model is critical to ensuring the timely deployment of the new model. Therefore,
we measure the time complexity of the proposed approach, providing detailed
insights into each step of the process.

Results and discussion

Figure 2.9 shows the evolution of the operational data in the two experiments: the
red lines highlight the drift points detected by the ADWIN method [12], the blue
line indicates the starting point at which the ML model adaptation approaches are
applied. In the Wikipedia dataset, a total of 48 drifts occur after the blue line. In the
Google trace dataset, 25 drifts occur after the blue line.

Version 1.0 30 April 2025 Page 20 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

30

25
=
TR

#Reqsuest
2e+0 4e+05

CPU utilization
15 20
e —

10

0e+00

500 1000, 1500 2000 2500

(= |

(] 10000 20000 30000 40000 50000
Time Step

Time Step
a) Wikipedia b) Google trace

Figure 2.9: The two datasets in the two experiments: a) Wikipedia, and b) Google trace.

The red dashed lines indicate positions where drift is detected by the
ADWINmethod; the blue line indicates positions where the retraining method
begins to operate. Further, Table 2.1 presents the two knowledge bases from the
experiments, detailing the total number of time series batches, the number of
cluster labels created by the HDBSCAN algorithm, and the initially estimated
dist_thresh. The knowledge bases are dynamically updated throughout the
experiments, with adjustments to cluster labels and recalculations of dist_thresh as
new models are introduced.

Experiment #TS Batches #Clusters | dist_thresh
Workload 42 5 93
Prediction

CPU Utilization 6 3 14
Prediction

Table 2.1: Initial configuration of knowledge bases used in the experiments. Values dynamically
evolve as new models are introduced during the experiment.

e1. Reliability of ML Models

Figure 2.10 (a) and (b) show the performance of the ML models during the two
experiments with different adaptation approaches. The performance of the ML
models without updates (represented by the black curve) is also plotted in this
figure. Without adaptation, the initial ML model clearly becomes obsolete,
resulting in a decline in accuracy as the experiments progress.

Version 1.0 30 April 2025 Page 21 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

i=1 =3
=R 3
T ks m’ﬂMﬁ " W
T v y .
] W 2
e ~8
%) o
IS, @
3% =
Q Q
< <<)
o | —— Auto-adaptive ML o —— Auto-adaptive ML
o Incremental Retrain o —— Incremental Retrain
Drift-based Retrain Drift-detection based Retrain
o Initital Model o — Initital Model
[] 5000 10000_ 15000 20000 25000 30000 0 500 1000 1500 2000 2500
Time Step Time Step

a) Workload prediction (Wikipedia) b) CPU utilization prediction (Google trace)

Figure 2.10: The ML model performance in the two experiments.

Table 2.2 summarizes the average accuracy of the ML models and the total
retraining events across the two experiments when using different adaptation
approaches. In both experiments, the proposed Auto-adaptive ML approach
demonstrates a competitive level of reliability for the two ML models, while
incurring significantly lower overhead costs compared to the other approaches. In
the Wikipedia experiment, the average accuracy achieved by the workload
prediction using the Auto-adaptive ML approach is 89.4%, compared to 90.2% with
the Drift detection-based retraining, and 91.9% with the Incremental retraining.
Notably, while the difference in reliability between the Auto-adaptive ML and the
two retraining approaches is small, the Auto-adaptive ML achieves this with
significantly fewer retrainings. The Drift detection-based retraining method
initiates retraining based on detected drifts, resulting in 48 retraining events. In
contrast, the Incremental retraining method triggers 1,250 retrainings, as it
updates the mode at one-day intervals (for the entire experiment with 30,000 data
points). By the end of the experiment with the Auto-adaptive ML approach, only 37
additional models were added to the knowledge base, meaning that the
Auto-adaptive ML invoked just 37 retraining processes — only when it could not find
an appropriate model in the existing knowledge base. Consequently, the
Auto-adaptive ML approach reduces the overhead cost for retraining by
approximately 22.9% compared to the Drift detection-based retraining approach,
and by approximately 97% compared to the Incremental retraining approach.

Method Wikipedia Google Trace
Accuracy (%) | #Retrainings | Accuracy (%) | #Retrainings

Incremental 91.9 (3.9) 1250 95.1 (2.2) 9

Drift Detection 90.2 (7.4) 48 95.0 (2.1) 27

Auto-adaptive ML 89.4 (5.2) 37 97.1 (1.8) 1

Table 2.2: Average accuracy and overhead cost (retrainings) for Wikipedia and Google Trace
predictions. Numbers in parentheses represent standard deviation.

Version 1.0

30 April 2025

Page 22 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

In the Google trace experiment, we observe that the initial model performs quite
well throughout the experiment, even without updates, achieving an average
accuracy of 80.1%. This is understandable, as the dataset only shows a recurring
drift with a repeating pattern (Figure 2.9(b)), which the ML model effectively
learned during the initial training. Specifically, the Auto-adaptive ML approach
achieves a slightly better reliability level for the CPU utilization prediction model
compared to other retraining approaches. The average accuracy of the ML model
achieved with the Auto-adaptive ML approach is 97.1% compared to 95.1% with
Incremental retraining and approximately 95% with Drift detection-based
retraining. The experimental results from this relatively stable data stream further
demonstrate that frequent retraining does not necessarily lead to the highest
reliability for the ML model. The Drift detection-based retraining approach invoked
a total of 27 retraining processes, while the Incremental retraining approach
invoked 9 retraining processes. In contrast, the Auto-adaptive ML approach
required only 1 retraining event. Consequently, in this experiment, the
Auto-adaptive ML reduces the overhead cost for retraining by approximately 96.3%
compared to the Drift-based retraining approach, and by approximately 88.9%
compared to the Incremental retraining approach.

e1. The Auto-adaptive ML Approach’s Scalability

The two main processes in the Auto-Adaptive ML approach that require time are
the time series matching process (implemented DTW) and the clustering process
(implemented HDBSCAN). The time series matching is an online process and thus
has a more significant impact on the decision time of the proposed approach. In
contrast, the clustering process is performed offline to update the knowledge
base. To comprehensively evaluate the scalability of the proposed method, we
will discuss the time complexity of both processes in detail.

e1.1 Building Knowledge base- HDBSCAN clustering

Generally, with N number of data points, HDBSCAN has an average-case complexity
of O(N log N)[25]. For large datasets with thousands of data points, the practical
performance of HDBSCAN can be influenced by factors such as data point density.
To evaluate the time complexity of HDBSCAN with large datasets, we conduct a
benchmark by performing HDBSCAN clustering on a sequence of datasets ranging
from 1,000 to 20,000 data points, with each setting of the number of data points
being tested 10 times. Figure 2.11 shows the average time (error bars show the
standard deviation) taken for clustering with HDBSCAN across different sizes of
input data points. Although the algorithm's time complexity is not linear with
respect to the size of the input, the increase in time is not significantly large. For
input sizes up to 20,000, the algorithm completes clustering in under 5 seconds. It is
worth noting that, for a specific domain, the input size of the knowledge base is
often not large and can be truncated by removing obsolete time series batches if
they are infrequently matched with the inference batches.

Version 1.0 30 April 2025 Page 23 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Time (ms)

1000 2000 3000 4000 5000
W,

0
t

5000 10000 15000 20000
Number of Data Points

Figure 2.11: Time taken for clustering with HDBSCAN algorithm
across different sizes of input.

e1.2 Time series matching - Dynamic Time Warping

Generally, the time complexity of the DTW algorithm is O(NxM) where N and M are
the lengths of the two time series being compared [26]. This quadratic complexity
makes DTW computationally intensive when dealing with long time series. To
evaluate the time complexity of time series batch matching, we conducted a
benchmark using DTW with different settings for the length of the time series
input, ranging from 1,000 to 10,000 data points. Each setting was tested 10 times.
Figure 2.12 presents the benchmarking results. It is clear that the time taken for
DTW increases with the length of the time series, rising from an average of 24 ms
for a length of 1,000 to approximately 2,9 seconds for a length of 10,000. However,
the matching time with this algorithm is acceptable for real-time systems where
the data streaming granularity is on the order of minutes, such as the streaming
operational data of cloud data centres as observed in the datasets used in the
experiment.

3000

Time (ms)
2000
,

500 1000
N,

9
\

8000 10000

2000 4000 6000]
Length of Time Series

Figure 2.12: Time taken for DTW time series matching with different
length of time series.

Version 1.0 30 April 2025 Page 24 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

2.2 [SR5.2] Smart Management of Cloud-Edge Resources

Management of Cloud-Edge resources is crucial in the Al-enabled orchestrator across the
Computing Continuum. This is achieved by leveraging the predictive capabilities of Al/ML
models, which analyze workload patterns in relation to dynamic resource consumption,
including CPU, memory, and network bandwidth, as well as energy consumption. The
systems are modeled using two complementary approaches. The first one involves the
development of advanced algorithms for resource optimization, which are then integrated
with the COGNIT testbed for real-world validation and deployment (subsection 2.2.1). The
second approach focuses on understanding the scalability and adaptability of these
systems across the continuum by employing modeling and simulation techniques. These
simulations help to evaluate system performance under varying workloads and
deployment scenarios, with the findings detailed in subsection 2.2.2.

2.2.1 Cloud-Edge resource optimization algorithms

Optimizing cloud-edge resources is essential to achieve resource management across the
continuum, ensuring seamless operation amid dynamic workloads and evolving
infrastructure policies. In this development cycle, we focus on developing the ILP model
and multi-objective evolutionary algorithms that incorporate workload characteristics,
interference effects, green energy availability, and resource usage cost to achieve
environmentally sustainable resource placement within the Continuum.

a) Metrics

Metrics fFor application and infrastructure are collected by Cloud-Edge manager, which are
utilised to develop optimization algorithms and taking into consideration some
optimization objectives such as resource interference cost, carbon emission, and monetary
cost.

b) Algorithms

b1.1 Optimal number of SRTs:

To determine how many SRTs are needed, the algorithm considers the current and
incoming workload. It applies a reactive SRT estimation approach by analyzing real-time
load metrics to assess the number of SRTs required to manage the current demand
effectively. The procedure for determining the optimal number of SRTs is presented in the
algorithm (Figure 2.13).

Version 1.0 30 April 2025 Page 25 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Algorithm #1: Optimal SRTs
Input: Incoming requests
Output: Optimal SRTs

Step 1: Determine SRTs needed for new incoming requests
Calculate SRTs needed for incoming request rate

Step 2: Account for backlog
Calculate SRTs needed for waiting functions

Step 3: Combine immediate needs
Total immediate SRT needs = incoming requests + waiting functions

Step 4: Consider current resources
Count idle SRTs and busy SRTs that will free up soon

Step 5: Make Final calculation
IF we need more SRTs than will be available soon (ideal + soon to be freed):
Return total needed + busy SRTs that won't free up soon
ELSE:
Return total needed + all currently busy SRTs

Figure 2.13: Algorithm for determining the optimal number of SRTs

b1.2 Initial placement mapping of SRTs to hosts:

The initial placement mapping of SRTs to hosts begins by profiling each SRT to understand
its resource requirements and calculate a priority score. Then the SRTs are sorted by
priority, focusing on the most resource-intensive first to optimize the overall allocation.
Next phase is to proceed to map each SRT in order, checking placement constraints and
selecting a host that meets resource availability, adheres to safety thresholds, and
minimizes resource waste. Finally, the SRTs are allocated to the best-fit host or mark it as
unallocated if no suitable option is found. The algorithm (Figure 2.14) for determining the
initial placement of SRTs to hosts is discussed as follows:

Version 1.0 30 April 2025 Page 26 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Algorithm #2: SRTs placement
Input: SRTs and available hosts
Output: Allocation solution

// Profile and prioritize
FOR each SRT:
Determine resource characteristics
Calculate priority score

Sort SRTs by priority (largest/most intensive First)

// Placement phase
FOR each SRT in prioritized order:
Verify placement constraints

Find best matching host that:
- Has sufficient available resources
- Maintains safety thresholds
- Minimizes resource waste

IF suitable host found:
Allocate SRT to host
Update resource tracking

ELSE:

Mark SRT as unallocated

Return allocation solution

Figure 2.14: Initial placement mapping of SRTs to hosts

b1.3 ILP For Cloud-Edge Resource Optimization

The ILP formulation primarily focuses on the integration of energy consumption,
migrations, and resource interference considerations into the integer linear programming
model. The input variables, decision variables, constraints, and objective functions are as
follows:

Input variables:
e HostsH ={h, h, .., h }, each of which has the following input variables:
o H]T,": the amount of memory available on the host hj, vji =1, 2, ., m,

o H;: the number of CPU cores available on the host hj, vi=1,2,.,m

Version 1.0 30 April 2025 Page 27 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

° ¢ base energy consumption of host h]_

o bj: energy per unit CPU usage for host h],
o Ej _— is the maximum possible energy consumption of the host h], when
100% CPU is utilized.

e The set of all virtual machines (VMs) to be mapped to the physical infrastructure is
V={,v,..v} each of which has the following input variables:

o V:n: the amount of memory requested for VM v, vi=1, 2, .. n,

c

o V :the number of CPU cores requested VM v, Vi=1, 2, .., n,

L
o V?: the CPU usage VM v, Vi = 1, 2, .., n,

A

o Xij : the current allocation of VMs to hosts, which is equal to 1 if the VM v, is

currently allocated to the host hj and 0 otherwise.

Decision variables:
° Xl,j: the allocation of VMs to hosts for the planning period, which is equal to 1 if the

VM v, will be allocated to the host hj during the planning period and 0 otherwise,

Vi=1,2 .,nY =12 .,m
° Yj: 1 if the host hj will be used during the planning period and 0 otherwise,

vVi=1,2,.,m

Constraints:
e The memory demanded by all VMs allocated to a host cannot exceed the available
memory of that host:

n
XV'<YH" V=12 ., m
- Ui JJ

l

e The CPU demanded by all VMs allocated to a host cannot exceed the available CPU
of that host:

n
XVISYH,Vj=12 ., m
i ji
e A VM cannot be allocated to a host that is off (implicit):
Xl.j < Y]_, vi=12 .,nVj=12 .,m

e FEach VM must be assigned to exactly one host:

m
YX =1,Vi=12 ., n
j=t Y

Version 1.0 30 April 2025 Page 28 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Objective Function 1: Minimizing Energy Consumption:

The simplest way to express the energy consumption (EC) is:

m n
EC = El(gl E + ch],)
where:

° EU_ is the contribution of the VM v, to the total EC of the host hj, vi=1, 2, .. n,
vVji=1,2,.,m,

* ¢ is the optional term that expresses EC of the host hj non-related to VMs,
vVj=1,2,.,m,

n
o ¥ Eij + chj is the total EC of the host hj, vji=1,2,.,m
i=1

The simplest way to express EC of the VM v.on the host hj, El,j is:
E =bV'X_
ij jiy
where bj is the coefficient that represents the average energy consumption on the host hj
per the unit CPU usage, if this host-VM combination (HVMC) is used (Xl_j = 1).

EC defined this way can be used as:

i=1
e Aconstraint,e.g. ECE ,where E isa predefined value.
max max

m n
e Anobjective function, e.g. minimize EC =) (Z Eij + chj),
j=1

Objective Function 2: Minimizing Migrations:
The simplest way to define the number of migrations as:
X X X

i=1j=1,j2k "

Where the VM v, is currently on the host h,ie,)gik =1.

Migrations defined this way can be used as:

n m
e An objective function, e.g. minimize MIG = Y Y X ,
i=1j=1,j#k

e A constraint, e.q. MIGSMmL,g, where Mmig is a predefined value representing the

allowed number of VM migrations.

Version 1.0 30 April 2025 Page 29 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Objective Function 3: Minimizing Interferences:

The simplest way to express the Resource Utilization Ratio (RUR) of host h], is:

Energy consumption of the host h], if VM v, is mapped to the the host hi

Maximum possible energy consumption of the host h,'
n

=l i
RUR = +—

J, max
Where:
) El_j is the energy contribution of VM v, on the host h]_

n

Y, Eij is the expected energy consumption of the host h], if VM v, is mapped to the
i=1

host hj in addition to other VMs.

° Ej - is the maximum possible Energy Consumption of the host hj when 100% CPU

is utilized. The time period is the same for all hosts H.
e Objective function is to maximize Average Resource Utilization Ratio (ARUR),e.g.,

ARUR = (L RUR)/m
j=1

e Another objective function can be somehow trying to pick the least ratio RURj to
place VM.

b1.4 Multi-Objective Cloud-Edge Resource Optimization: Formulation

We consider a discretized workload model dividing time T into consecutive equal time
slots, represented as T = {t|t € [0, T], (t+1) - t = At seconds}. The system operates across a

set of geographically distributed regions R = {rjlj €[1,n]} and set of n heterogeneous

computing clusters represented as H = {h’i'lie [1,n],j€[1,m]} located across m different
regions. Each computing cluster h]l_' owns d types of resources such as CPU, GPU, memory,
disk storage, and network bandwidth, etc. for which R‘zj depicts the availability of resource
din hjl The current utilization of resource d at computing cluster i located at j h region is
defined as CUZ. Let ei’j denote the CO2 emissions (e.g., kg CO2 per unit) for cluster J
located at j h region. The monetary cost of using cluster jat ttime slot is p:j. The
availability of a computing cluster is expressed as Z = {zi’j |i€[1,n],j€[1,m], tET, zi’jE{O,
1}}, which means zi’j = 0, whenever the computing cluster is unavailable during t. Next, we
define the incoming function invocations as F = {fi’j’klie [1,n],j€[1,m], kEe[1,1], t € T}, Each

ik ijk i)k

. ik ik i
invocation request contains four attributes, i.e., f " = Sy foi e ,f;’ >, where f;j)

Version 1.0 30 April 2025 Page 30 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

denotes the function invocation ID,fZ’k denotes arrival time, f;i’k represents the finish

. ik .
time, and /" denotes the resource requirement.

The multi-objective cloud-edge resource optimization is employed to balance three key
objectives: minimising resource interference, carbon emission, and monetary cost across
Cloud-Edge clusters. Mathematically, we formulate the optimization objectives as follows:

1. Minimize interference effect (fl): The objective of interference-aware scheduling is

to minimize contention of hardware resources on the computing clusters. In
principle, picking the cluster where adding the Serverless function’s resource usage

would minimise the distance Dj}'u_ between the clusters’ resource utilisation. We

: d . ijk
model D’ as CU,+f,

resource dacross all computing clusters. The objective is to minimize the
interference effect.

—d —d
— CUl,j) where, CUU_ denotes the average utilisation of

min % ¥ ¥ (max (D))

ti=1j=1

2. Minimize emission of carbon footprints (fz): The carbon footprint of Continuum

clusters is computed by measuring the carbon intensity 'ei’j' of the power grids

powering each node; this is expressed in grams of CO2 equivalent per kilowatt-hour
(gCO2eq/kWh), representing the average weighted carbon emissions of the mix of
sources utilized to generate energy at any given time. The objective is to minimize
carbon footprint emissions.
n m ij
min 3% 3 ()
t i=1j=1

3. Minimize the total monetary cost (f3): This objective function deals with the

minimization of the overall monetary cost 'p:}' of using cluster iresources at t time

slot; this is expressed using randomized cloud costs across different clusters.
Clusters powered by greener energy sources were assigned slightly higher costs,
thus creating a deliberate trade-off between reducing carbon intensity and
operational expenses. The objective is to minimize the total monetary cost.
mny ¥ ¥ @)
t i=1j=1

4. Resource constraints: The optimal scheduling of functions on the available
computing clusters shall ensure that the placement process respects the
availability of resources. The assignments of functions is defined as

A={e lienl,jenml ke 1l teT 020
The availability constraint is formulated as follows:

l
ij,k ij,k i,j d iy .
Y x Y <@ xRY), t eT,vhieH

=1 t d t i, i

Version 1.0 30 April 2025 Page 31 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

b1.5 Multi-Objective Cloud-Edge Resource Optimization: Algorithms

We compare the performance of three multi-objective optimization algorithms-
Non-dominated Sorting Genetic Algorithm Il (NSGA-II), Multi-Objective Genetic Algorithm
(MOGA), and Strength Pareto Evolutionary Algorithm 2 (SPEA2) to balance three key
objectives: minimising resource interference, carbon emission, and monetary cost across
Cloud-Edge clusters. The working of these algorithms are as follows:

1) Multi-Objective Optimization with NSGA-II:

The NSGA-II [1, 2] is a multi-objective evolutionary algorithm used to address conflicting
objectives in complex optimization problems. As discussed in the deliverable D4.3, NSGA-II
operates by iteratively refining a set of candidate solutions through a process of selection,
crossover, and mutation to achieve Pareto-optimal solutions.

Llst of serverless| [List of continuum
functlons clusters

\\

& N\

[Initiate populatlon

2

[Fitness Functions Evaluation]

12

——)[Non-Dominated Sorting]
Selection](——I

i
. 2
[Crossover
[
[

+ 1
Mutation] :

v + Genetic
Offspring evaluation] ' Operators

v :

Offspring population
reached ?

Max generation
reached ?

Figure 2.15: NSGA-II algorithm flowchart

The workflow of the NSGA-II algorithm [1, 2, 8] is presented in Figure 2.15. The algorithm
takes the list of serverless functions and list of continuum clusters for placement. In the

Version 1.0 30 April 2025 Page 32 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

encoding mechanism, each solution is encoded as a vector of integers. The length of the
vector is considered as a chromosome of size {; which is a number of functions for
placement. The content of each cell of the vector is a gene value in the chromosome;
which can take a number between 1 and n that denotes the cluster assigned to that
function.

The main phases of this algorithm are as follows: (i) Initiate population: The algorithm
begins by initializing a random parent population; where a random number between 1 and
n is assigned to each cell of the vector with the use of given capacity constraints; (ii)
Nondominated sorting: After evaluating the individuals at each iteration, they are ranked
based on both their fitness and crowding distance. Fitness reflects an individual's ability to
survive and reproduce in the next generation, whereas crowding distance quantifies how
close an individual is to its neighbors in the objective space. The crowding distance is
computed as the summation of normalized distances between neighboring individuals
across all objectives; (iii) Genetic operators: Using the ranking of individuals, the
top-ranked candidates are selected as parents and genetic operators (i.e., selection,
crossover, mutation) are applied to generate offspring. Subsequently, we evaluate the
objective functions fFor each individual in the offspring population; (iv) Recombination and
Selection: This phase combines the parents and offspring, and performs nondominated
sorting to assess the fitness for each individual. Finally, the top-ranked individuals are
picked to serve as parents for the next generation. The rank i.e., fitness of each individual
is set in such a way that those in the first pareto front are entirely nondominant, while
individuals in the second pareto front are dominated only by those in the first front.
Priority is given to individuals from the first pareto front. If the desired population size has
not been reached, individuals from the second pareto front will be considered, the process
will continue until the required number of individuals is met to proceed with the next
iteration.

2) Multi-Objective Optimization with MOGA:

The MOGA contains problem-specific operators (like evaluation, mutation, and crossover),
and parameters such as population size, number of generations, and probabilities for
crossover (cxpb) and mutation (mutpb). The algorithm begins by initializing and evaluating
a population of individuals. In each generation, it calculates a scalar fitness for each
individual as the weighted sum of multiple objective values (defaulting to equal weights).
This scalar fitness is used for sorting the population to guide the selection process. The
genetic variation process is applied using crossover and mutation, and the resulting
offspring are evaluated. The next generation is selected by combining the current
population and offspring, then selecting the best individuals. After all generations are
completed, the Pareto front is extracted from the final population using nondominated
sorting and returned.

3) Multi-Objective Optimization with SPEA2:

The SPEA2 [9] is a well known multi-objective evolutionary algorithm proposed by Zitzler
et al. The evolutionary algorithm is based on the concept of Pareto domination for fitness
evaluation and selection, and incorporates a niche strategy and an external archiving

Version 1.0 30 April 2025 Page 33 of 65

SovereignEdge.Cognit=101092711

D4.4 COGNIT Serverless Platform - Scientific Report - d

mechanism for elite retention. The detailed workflow of SPEA?2 is presented in Figure

2.16.

ist of serverles

& |

It

ist of continuu

i

functions clusters
2 ¥
9V
v
Z I

Initialization population P,
archive set Q is empty

\2

Fitness assignment

v

[Enviornmental selection]

|

)

|
4,[

Return non-
dominant
individuals in Q

. /

The SPEA?2 offers several advantages over other multi-objective evolutionary algorithms,
its genetic evolution process exhibits significant randomness. This randomness helps
expand the search space, preventing the algorithm from getting into local optima.
However, it also leads to insufficient local search capabilities. As the algorithm approaches
regions near the Pareto optimal solution, its optimization efficiency tends to drop
significantly, and in some cases, the algorithm fails to locate the true Pareto optimal
solution [10].

Termination condition

Pairing selection;
Evolutionary operation

Figure 2.16: SPEA2 algorithm flowchart

b1.6 Results and Analyses

In this part, we analyze the performance of three multi-objective optimization approaches
across multiple scenarios and datasets. The evaluation focuses on three primary
objectives: interference minimization, carbon emissions reduction, and cost-effectiveness.
The analysis leverages results derived from real-world and synthetic datasets, as
presented in Tables 2.4 and 2.5, along with Figures 2.17 to 2.24 over different control
parameter values shown in Table 2.3. We discuss the trade-offs and insights observed for
NSGA-Il, MOGA, and SPEA2.

Version 1.0 30 April 2025 Page 34 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Control Parameter Value(s)
Population Size 500
Stopping Criterion (Generations) 10
Crossover Probability 0.8,0.9
Mutation Probability 0.05, 0.1

Table 2.3: Control parameters for optimization
Multi-Objective Optimization with varying parameters on synthetic dataset:

The performance metrics on the synthetic dataset are summarized in Table 2.4. The Pareto
fronts for varying parameters are shown in Figures 2.17 to 2.20. Compared to the
real-world dataset, the synthetic dataset introduces more significant variations in
interference and emissions. Using control parameters such as a population size of 500, 10
generations, a crossover probability (cxpb) of 0.8, and a mutation probability (mutpb) of
0.05, MOGA demonstrated superior performance in terms of interference score, such as
800.24 and execution time of 16.10 seconds, whereas NSGA-Il achieves better results in
carbon emissions and cost. For instance, NSGA-Il achieves carbon emissions of 5.88, cost of
5.49, and an execution time of 21.89 seconds. SPEA2 reports a higher interference score
(800.24), increased carbon emissions (7.43), and greater monetary costs (7.20).

Algorithm | cxpb | mutpb | Interference Carbon Cost Execution
Score Emissions | (€) Time (s)
(9CO2eq/
kwh)

NSGA-II 0.8 0.05 971.24 5.88 5.49 21.89
MOGA 0.8 0.05 800.24 6.35 5.99 16.10
SPEA2 0.8 0.05 1259.92 7.43 7.20 105.92
NSGA-II 0.8 0.1 989.97 5.94 5.56 22.18
MOGA 0.8 0.1 829.24 6.36 6.30 17.36
SPEA?2 0.8 0.1 1292.5 7.36 7.19 104.68

Table 2.4: Comparison of NSGA-Il, MOGA, and SPEA2 on synthetic dataset for population size: 500
and generations: 10

However, increasing the mutation probability (mutpb) from 0.05 to 0.1 did not significantly
affect the overall performance while SPEA2 struggles to compete due to its higher
execution times. Overall, SPEA2 demonstrates the poorest performance, with an
interference score of 1292.5, carbon emissions of 7.36, a cost of 7.19, and an execution

Version 1.0 30 April 2025 Page 35 of 65

D4.4 COGNIT Serverless Platform - Scientific Report - d

SovereignEdge.Cognit-101092711

time of 104.68 seconds. In terms of interference score and execution time, MOGA
outperforms both SPEA2 and NSGA-II, achieving an interference score of 829.24 and an
execution time of 17.36 seconds. On the other hand, NSGA-II delivers better performance
than MOGA and SPEA2 in terms of carbon emissions and cost, with carbon emissions of
5.94 and a cost of 5.56, albeit with a slightly higher execution time of 22.18 seconds.

L] MNSGA-Il (Circle)
MOGA (Square)
SPEAZ (Triangle)

A
8
7
6 &
s E
=
a =
=
3 (=]
L)
2
1
o]
300
-
F

Figure 2.17: Population size = 500, Gen=10, cxpb=0.8, mutpb=0.05.

- NSGA-Il (Circle)
MOGA (Square)

A SPEAZ (Triangle)

Cost (Minimize)

Figure 2.18: Population size = 500, Gen=10, cxpb=0.8, mutpb=0.1.

30 April 2025 Page 36 of 65

Version 1.0

D4.4 COGNIT Serverless Platform - Scientific Report - d

SovereignEdge.Cognit=101092711

@® NSGA-Il (Circle)
MOGA (Square)
SPEAZ (Triangle)

A
8
7
s =
s E
=
a =
@
3 (=]
o
2
1
(o]
300
N
(/)
-

1000 50

Figure 2.19: Population size = 500, Gen=10, cxpb=0.9, mutpb=0.05.

[] NSGA-I (Circle)
MOGA (Square)
SPEAZ2 (Triangle)

Cost (Minimize)

Figure 2.20: Population size = 500, Gen=10, cxpb=0.9, mutpb=0.1.

30 April 2025 Page 37 of 65

Version 1.0

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Multi-Objective Optimization with varying parameters on simulated dataset

The performance metrics on the simulated dataset are reported in Table 2.5. The pareto
fronts for varying parameters are shown in Figures 2.21 to 2.24. Using control parameters
such as a population size of 500, 10 generations, a crossover probability (cxpb) of 0.8, and a
mutation probability (mutpb) of 0.05, NSGA-II achieve strong trade-offs across
interference, cost, carbon emissions, and execution time. NSGA-II consistently achieves
the lowest interference across multiple configurations, for example, reporting a score of
19.32 with cxpb=0.8 and mutpb=0.05. NSGA-II also outperforms in terms of carbon
emissions, such as 17.64, resource usage cost 6.05, and execution time of 21.14 seconds. In
contrast, SPEA2 reports significantly higher values across all metrics, with an interference
score of 68.25, carbon emissions of 208.44, monetary cost of 11.97, and an execution time
of 106.08 seconds.

Increasing the mutation probability (mutpb) from 0.05 to 0.1 had minimal impact on overall
performance. However, SPEA2 continued to lag behind, primarily due to its higher
execution times. For instance, SPEA2 demonstrates the poorest performance, reported an
interference score of 62.82, carbon emissions of 203.76, a cost of 11.88, and an execution
time of 101.57 seconds.

On the other hand, NSGA-Il maintained superior results, achieving interference as low as
20.41, carbon emissions of 14.86, and cost of 6.45 for cxpb=0.8, mutpb=0.1. NSGA-II
demonstrates superior execution efficiency, with times as low as 22.77 seconds. NSGA-II
consistently appears as one of the dominant algorithms, demonstrating robust exploration
of the solution space and offering a diverse set of Pareto-optimal solutions; which is an
asset for effective decision-making.

Algorithm | cxpb | mutpb | Interference Carbon | Cost Execution
Score Emissions | (€) Time (s)
(9CO2eq/
kwh)

NSGA-II 0.8 0.05 19.32 17.64 6.05 21.14
SPEA2 0.8 0.05 68.25 208.44 11.97 106.08
NSGA-II 0.8 0.1 20.41 14.86 6.45 22.77
SPEA2 0.8 0.1 62.82 203.76 11.88 101.57

Table 2.5: Comparison of NSGA-Il and SPEA2 on simulated dataset for population size: 500 and

generations: 10

Version 1.0

30 April 2025

Page 38 of 65

D4.4 COGNIT Serverless Platform - Scientific Report - d

SovereignEdge.Cognit=101092711

MNSGA-Il (Circle)

L
MOGA (Square)
' SPEAZ (Triangle)
=
E
=
=
&
Figure 2.21: Population size = 500, Gen=10, cxpb=0.8, mutpb=0.05.
@ NSGA-Il (Circle)
MOGA (Square)
A SPEAZ (Triangle)
g
E
=
=
z
o

500

Figure 2.22: Population size = 500, Gen=10, cxpb=0.8, mutpb=0.1.

30 April 2025 Page 39 of 65

Version 1.0

D4.4 COGNIT Serverless Platform - Scientific Report - d

SovereignEdge.Cognit=101092711

@ NSGA-II (Circle)
MOGA (Square)

A SPEAZ (Triangle)

Cost (Minimize)

500

Figure 2.23: Population size = 500, Gen=10, cxpb=0.9, mutpb=0.05

@® NSGA-Il (Circle)
MOGA (Square)

A SPEAZ (Triangle)

Cost (Minimize)

500

Figure 2.24: Population size = 500, Gen=10, cxpb=0.9, mutpb=0.1.

Page 40 of 65

30 April 2025

Version 1.0

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

2.2.2 System Modelling and Simulations

a) Modelling for energy-aware continuum systems

Continuum infrastructures are expected to consume significant amounts of energy; data
centres alone are projected to consume 10% of global energy by 2030 [29], whilst demand
and complexity is expected to further increase to support over 50 billion IoT devices.
Added to this, a reliance on ML-based training and inference is causing data centres to
draw massive electrical power, with approximately 40-50% of a data centre's operational
costs attributed to electricity bills?.

Given the cost of Continuum operations, there is a clear need to reduce energy
consumption - typically through efficient orchestration mechanisms. Efficiency can be
defined in multiple aspects - reducing data transmission costs, maximizing resource
utilisation, processing data closer to the user to reduce latency-induced overheads, etc. A
particularly promising approach is in distributing compute load based on Carbon Intensity
(Cl) and green energy availability in a particular region to maximise green energy utilisation.

To achieve this, we are investigating how to reason across not only Continuum resources,
but the underlying electrical infrastructure on which they consume. Specifically, we are
investigating how Continuum orchestration can interact with Smart Grid technology. The
Smart Grid provides decentralized power generation, enhancing reliability, real-time
monitoring, and consumer empowerment, etc.

To design novel methods for improving energy efficiency and sustainability in such
infrastructures, it is important to accurately represent the Continuum, and formal models
must be created that have integrated the Continuum with energy considerations (e.g.
energy providers, the Smart Grid, etc.). Furthermore, model-based solutions are required
to address energy concerns rigorously for autonomous resource management in the
continuum environment. However, there remains a notable gap in the literature
concerning energy models specifically tailored for the Edge-Cloud Continuum instead of
traditional clouds [30]. Moreover, different components of energy (such as energy
providers and import/export of power) addressed separately across existing literature
need to be integrated into the Edge-Cloud Continuum for comprehensive energy
modelling and simulation of models. To address this, as part of D4.4 we:

e Present - for the first time - a fFormal model that integrates Smart Grid and
Cloud-Fog-Edge Continuum components, their interactions, and their
characteristics.

e Present mathematical models that can be utilised to transform the model into a
simulation by introducing container-level granularity, idle and busy power, and
carbon intensity of the Smart Grid.

e Develop a model-based simulation, showing the transformation of the model into a
simulation and validating the significance of the model.

2 https://encoradvisors.com/data-center-cost/ (accessed on 14-April-2025)

Version 1.0 30 April 2025 Page 41 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

a1l. Integrated Continuum/Smart Grid model

A model should capture the key elements of the integrated Continuum and Energy system,
whereas, in addition, our formal model rigorously defines the components interacting with
each other and their characteristics to reduce carbon emissions. Formal models aiming to
represent problems appropriately and provide guidelines are usually validated through
rationales and simulations.

The evolved Continuum involves horizontally and vertically federated data centre layers to
address the concern of latency, but apart from latency, many other factors play their role
in Continuum management, and therefore, an appropriate model of the Continuum should
cover the guidelines addressed in this section. The Continuum system has a heterogeneity
of platforms, including tools and resources available through Mist, Edge, Fog and Cloud.
The Figure 2.25 presents a scenario of six data centres represented as D = {DC,, DC,, DG;,
DC,, DCs, DC¢}, and these data centres become part of four types of regions, which are
Cloud Service Provider (CSP), Workload, Energy Provider (EP) and Geographical regions.

Figure 2.25 shows that there can be more than one CSP; some examples can be AWS,
Azure, Google, Red Hat, Alibaba, IBM, etc. Furthermore, service consumers can also have
their own on-premises data centre (which might not be very powerful). The processing of
users' tasks can begin anywhere in the Continuum, starting from on-device to data centres
such as on-premises, far edge, near edge, and cloud. Different service providers through
various Service Level Agreements (SLAs) with other providers and users formulate a
loosely coupled collaboration (also known as federation), helpful in Flexible
decision-making to facilitate operations and ultimately assist their own corporate goals.
Along with the introduction of heterogeneous platforms in the Continuum system, all
participating CSPs, i.e. the multiple providers, bring more flexibility in massive scalability
when needed.

In addition, the integration of multiple layers and providers also increases the complexity
of automatically configuring tools and handling the issues through a self-healing process,
which is the need of time. Figure 2.25 shows the CSP regions C = {CSP,, CSP,}, where CSP, =
{DC,, DC,, DC;, DC,, DCs}, CSP, = {DC;, DC¢} and DC; is shared between two CSPs. The data
centres can have shared servers also available at the time of need for their collaborators. If
one CSP’s data centres are overloaded or are not able to meet some QoS (Quality of
Service) like latency, energy, etc., then a shared data centre option can be utilised. The
federation among CSPs can be developed in two different ways to implement
decentralised control:

1) CSPs can maintain a public log visible to collaborators to share information about
resource availability or percentage of utilisation, e.g. 20% of the resources of a
data centre are available at a certain time, which can be used by the collaborators.
This log can be seen as a partial view of the global infrastructure, while individual
CSPs have a full view of their infrastructure. In this first way of federation among
CSPs, each CSP is fully autonomous in making decisions about job placement
anywhere in the data centres owned by it. The Local Controller (LC) of CSP has a
property of sovereignty in terms of self-management to handle jobs received from
the collaborators.

Version 1.0 30 April 2025 Page 42 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

2) CSPs can also have some global view of the concurred infrastructures, so an LC of a
CSP can also make job offloading decisions itself, rather than handing over the job
to the LC of the collaborator. Therefore, in this type of federation, LC is a kind of
Global Controller (GC) with more control over all available resources within a CSP
region.

Figure 2.25 also shows multiple workload or application regions. There are a total of 4
applications A = {A1, A2, A3, A4}, shown in the figure. Multiple collaborating CSPs have
parallel workloads, facilitated by multiple data centres, represented as A1 ={D1}, A2 = {D1,
D2, D3, D5}, A3 ={D2, D3, D4, D5}, and A4 = {D5, D6}. Considering the CSP regions, we can
further realise that CSP1 has a dedicated workload A1; apart from A1, all applications are
using the shared data centre D5 owned by one of these CSPs. For a realistic Continuum
representation, a model for the Continuum must consider the workload regions having
conflicting QoS, like response time, not giving enough room to another workload in the
same data centre. The Continuum system has a characteristic of infrastructural dynamicity
because resources can be in mobility (e.g. information processing by a moving autonomous
vehicle), and application users can fluctuate. Therefore, effective management is required
to connect or divert users to the most suitable node and scale the resources by turning
them on/off, etc.

From Figure 2.25 we can also see that there can be multiple Power Source Regions (PSRs)
or Power Distribution Network (PDN) routes represented as PSR = {PSR1, PSR2, PSR3,
PSR4, PSR5, PSR6, PSR7, PSR8}, where PSR1 = {DC3}, PSR2 = {DC1, DC3}, PSR3 = {DC1, DC2,
DC3}, PSR4 = {DC2}, PSR5 = {DC2, DC5}, PSR6 = {DC5, DC6}, PSR7 = {DC4}, PSR8 = {DC4,
DC6}. The diagram shows that DC3 can be powered by {PSR1, PSR2, PSR3}. A PDN can have
many sources of energy, and a provider can have multiple PDNs. This makes the overall
energy-related decision-making more complex due to the versatility of providers, sources,
intermittent production behaviours, agreements, load distribution, balancing, and energy
factors conflicting with other QoS. If at any moment one EP does not have enough green
energy left, the workload or job can be placed or migrated to a data centre currently
powered by a green source, be it from green PSR, on-site, or another EP. Apart from the
availability of green energy, cost and Cl that can be the reason behind picking a certain
source/provider or migrating the job somewhere.

From Figure 2.25, we can see that the data centres of a Continuum can be dispersed across
various geographical boundaries. Boundaries may represent cities, states, countries, Edge
layer regions, Fog layer regions, Cloud layer regions, data-regulation boundaries,
security-defined regions, etc. In the figure there are two geographical regions G = {G1, G2},
where G1 ={DC1, DC2, DC3, DC5} and G2 = {DC4, DC6}. Suppose that if the carbon intensity
of G2 > G1is high at a certain time, then a job of A4, which is part of both regions, can be
placed in G1. Overlooking such regional considerations can compromise the model
decisions involving a complex continuum.

In Figure 2.26, an integrated Smart Grid model is presented. For simplicity, it is divided into
three layers: power, logic and distribution. The power layer consists of different power
sources, including green, renewable (not all renewable sources are entirely green), brown
and nuclear power (low carbon). A major property of renewable energy sources is the
intermittence of production, rising uncertainty, i.e. the pattern of production is very

Version 1.0 30 April 2025 Page 43 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

inconsistent, and it varies significantly based on region, weather conditions, month and
time of day. The power layer highlights that the users or consumers of the power can also
be a source of power for the Smart Grid. Any time new sources can be added or removed
dynamically. Users can have solar panels, which they can either use directly as a power
source - feeding any onsite surplus to the Smart Grid, or the harvested power can be
directly fed to the Smart Grid with adjustments made in the bills. Apart from the green
sources contributed by the users, there are dedicated green and brown sources as part of
PDN or EPs. Although energy is produced as much as required to balance the frequency,
batteries on the user side or in the Smart Grid are used to store the surplus energy from
green and brown sources.

The logic layer represents the decision-making phase of the Smart Grid. There can be
multiple PDNs, e.g. a national grid having power infrastructure spread across multiple
cities, where each city’s infrastructure can be called a PDN. Furthermore, there can be
multiple power providers in the form of microgrids, the national grid and agreements of
import with other EPs. Communication among multiple PDNs can be addressed by the
Meta-PDN. PDN knows green-only, brown-only and power-mix sources. Green-only sources
can come from green onsite surplus or dedicated green sources. Brown can only come
from dedicated brown sources. Power-mix comes from dedicated brown, surplus battery
storage and imported power from other PDNs and regions. The same surplus storage
contributing to the power-mix can be used to export power to other regions and PDNs.

The third layer is the distribution layer, representing a Continuum consisting of several
data centres. Some have multiple power sources, including the on-site power of the data
centre. According to the requirement, source availability, and power distribution
agreements (if any) with the user, power sources are utilised, where PDN is responsible for
dynamically deciding the source to power a particular region.

Version 1.0 30 April 2025 Page 44 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

CSP Regions Workload Regions
Xooo®

= £ EES

DCs

Figure 2.25: Regional Representation

Power Layer Logic Layer Distribution Layer
= Onsite Surplus »{ Green Only Specific

}'I (G1-n) Dynamically

Reroute

__1Green Sources

Brown Only

Brown Sources (B1-n)
|

I -
Y Mix (M

Surplus Storagﬂ<

S AA\N

Data
centres

Al

Import [€—
LD
Export
Users Meta-PDN < > Other Regions

Figure 2.26: Smart Grid Representation

Version 1.0 30 April 2025 Page 45 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

a2. Mathematical modelling

The evolved nature of the Continuum requires novel mathematical models to drive the
simulation and show the components’ interaction of the Smart Grid and Edge-Cloud
Continuum. In the proposed mathematical models, for the first time to the best of our
knowledge, the container-level granularity, idle power, busy power, and Cl are collectively
introduced as contributors to energy and other metrics.

Ms_c indicates the makespan of container ‘i’, which is the maximum or overall time taken by
a set of jobs k.

MS C = Max (Tk), V Jobs k eContainers i

The makespan of server ‘j’, denoted as Ms, is the maximum makespan of containers that
have run on it for the time under consideration.

MS == Max (MS_Cl,), V Containers i € Server j

The share ratio of container ‘i’, denoted as SR_c, defines the limit of processing power. In
the simulation limit ratio can be calculated by dividing the MIPS of a container by the MIPS
of the server.

MIPS

SR C = FPS/_' Container i € Server j

The energy consumption by container ‘i', represented as EC, is the subset of busy power

P x SR_C.consumed for MS_C_ time.
busy/_ i i

EC = MSC xP X SR_C, Containeri € Serverj
i busyj i

The energy consumption by a server, denoted as E,is based on idle and busy power of the
server. The P . Poweris always consumed, whereas the busy power is consumed in
addition to the idle power when some workload is assigned to a server. The summation of

total idle power and energy consumed by all containers is the energy consumption by the
server.
n
Es = MS], X Pidlej + 'Z (ECi), V Containersi € Server j

i=1

The energy consumption by the DC is based on all servers ‘j' that are part of that DC.

EDC=,
J

1M =

ES, V Serverj € DC
1 7

The energy consumption by edge, fog, cloud or geographical region depends on the
summation of energy consumption by all DCs that belong to the region.

=S

E, o6 = 151 Epe, ¥ DCk € E/F/C/G

Version 1.0 30 April 2025 Page 46 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

The Server’s Energy Full Busy portion, denoted as E_.is the maximum possible power

drawn from the server regardless of the workload.

ESFB = MSjX Pbusyj

The energy consumption of the Server for which containers of the workload are
responsible, denoted as E., depends on the energy consumed by all containers belonging

to the workload running on the server ‘j'. Server ‘j' can be multiple, running the containers
of the workload ‘w'.

Esw =) (ECi), V Containers i € Workload w, Server j€ SW, where w is running on j
i=1

Share Ratio of Workload, i.e. the percentage of energy consumed by containers of the

workload out of the Full Possible Energy of Server is given by SR_W.

SRW = =2
- ESFB

A workload is not responsible for all the idle power consumed by the set of Servers ‘Sw’
running the workload. Therefore, we propose to assign a subset of idle consumption of
servers in addition to busy power consumption by containers i.e. E. We attribute anidle

portion of the same ratio as of busy share, achieved through MS X P, X SRW for each

server.

EW = % ((MSj XP., X SR_W)+ Esw)' Server j€ Sw, where w is running on j
j=1 j
Energy consumption by a CSP does not depend on DCs because a DC may be running
workloads owned by another CSP. Therefore, energy consumption is determined by the

workloads belonging to the CSP.

n
ECSP = Y EWW, vV Workloadw € CSP
w=1

Carbon Emission of Container ‘i’, denoted by CECont, is the sum of the products of kWh EC,

ininterval 'k’ and gCO2-eq/kWh Cl in every interval 'k’ of regions set ‘R’ where the
containers are deployed.

n

CECont = Y EC xClI
k=1 % K

Carbon Emission of Container ‘i’ average, denoted by CECont , takes the average of Clin

regions ‘R’ during the intervals set ‘K’. The Cl average is helpful when Cl readings do not
exactly match with the container's life cycle ‘K'.

CEContA = ECi X CIK.AW.R

Version 1.0 30 April 2025 Page 47 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Carbon Emission Idle, denoted as CEIdle is the product of the sum of all the idle power of
servers ‘j" in region 'r’, each interval time ‘k’, and Cl during interval 'k’ for which separate Cl
readings are available.

I m{(n

CEldle = Y Y (z Pidle) Xk x CI,
Jj

r=1k=1\j=1

”

The total Carbon Emission, denoted as CE, is the sum of Carbon emitted by containers and
total idle carbon emissions.

n
CE = (E CEConti)+ CEldle

i=1

The Host Resource Utilisation Ratio (HRUR) is the energy consumed by the host out of the
total possible consumption.

¥ (Ec)
HRUR = ‘:; , V Containers i € Server j

SFB
J

Our proposed Average Resource Utilisation Ratio is not based on time estimates; rather, it
is an average HRUR.

T HRUR,
ARUR = £&——

a3. Initial Results and Analysis

A subset of Azure Functions real traces analysed in [31] For July 2019 is utilised in the
simulation. The traces give a pattern of function invocations concerning the time of the
day, duration and ending time of functions belonging to different workloads or
applications running on the Azure Functions platform. We have considered two workloads,
W1 and W2, represented with the hashes Workload_73427...(truncated) and
Workload_85479...(truncated), respectively, in the original dataset. These workloads have
10 and 9 functions, respectively. The time duration of function invocations, or in other
words, jobs arrival time considered is 0s to 16740.00579s. CPriorityN has been tested in 6
different settings, namely CPriorityN, CPriorityLessDCN, CPriorityLessHosEN,
CPriorityAustraliaN, CPriorityUSAN, and CPriorityAustraliaM.

CPriorityUSAN, and CPriorityAustraliaM. CPriorityN has 3 EPs, one from the USA and two
from Australia. In CPriorityN Cl is of night ‘N’ time, where the night-time is 1-Jan-2024
00:00 - 04:39 hours. CPriorityLessDCN has 2 DCs less than CPriorityN, and the rest of the
settings are the same. Similarly, CPriorityLessHostN has 2 fewer hosts than CPriorityN.
CPriorityAustraliaN and CPriorityAustraliaM only consider Australian EPs, i.e. EP3 and EP4,
but CPriorityAustraliaM has considered morning ‘M time Cl values, i.e. 1-Jan-2024 06:00 —
10:39 hours.

The following Five scenarios are considered for the initial validation with these 6 settings,
while all other settings are the same:

Version 1.0 30 April 2025 Page 48 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Different number of EPs (CPriorityN vs CPriorityAustraliaN).

Different EPs but same number of EPs (CPriorityUSAN vs CPriorityAustraliaN).
Different number of host machines (CPriorityN vs CPriorityLessHostN).
Different number of DCs (CPriorityN vs CPriorityLessDCN).

Different time zones (CPriorityAustraliaN vs CPriorityAustraliaM).

The CPriorityN algorithm is as Follows:

Algorithm: CPriorityN

Input: R~(set of regions), DC_ ~(DCs in region r), H~(set of hosts),

J~(incoming job)

Output: Job jassigned to FaaS container

Step 1. Wait for a job j to arrive

Step 2. rt— l:'lsijlal CI(r)

Step 3. RA(d) = S Bt vdeDC .

Step 4. d - A RA(d)

Step 5. h e NextHostRR(d*)

Step 6. If 3ce h*, such that Sj = service(c) and Load(c) < 2
Step 7. Then cj

Step 8. Else c'«NewC ontainer(Sj) for Sj and c'«j

Step 9. Return to Step 1

Figure 2.27: Carbon-aware Scheduling of FaaS

These five scenarios demonstrate that Smart Grid factors like (EPs count, same count but
different EPs, different time zones showing intermittence), highlighted in the model, can
have an impact on carbon footprints (CF) of the Continuum, for the same Continuum
settings. Similarly, the Continuum factors like (number of DCs, number of hosts) can also
affect CF of the Continuum, for the same Smart Grid settings.

The Figure 2.28 shows the number of FaaS function invocations (jobs) handled by
Geographical Regions (GRs), Energy Provider Regions (EPRs), Non-federated Regions
(NFRs) - if the subset of the workload of CSP1 gets mapped to the DCs owned by CSP1
then this scenario is of a non-federated region, and Federated Regions (FRs) - if the subset

Version 1.0 30 April 2025 Page 49 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

of the workload of CSP1 gets mapped to the DCs owned by CSP2 then this scenario is of a
federated region. Looking at these five scenarios, it is evident from the jobs placement in
different settings of the Smart Grid and Cloud-Edge Continuum, that Smart Grid settings
impact the Continuum’s carbon emissions, and similarly, a minor change in the Continuum
settings also impacts the carbon emissions associated with the Smart Grid.

Jobs Distribution in Regions

1000
CPriorityN{ 336 664 336 NA 481 269 323 201 207 I
- 800
» CPriorityLessDCN{ 336 664 336 NA 481 216 376 281
£
E CPriorityLessHostN { 336 664 336 NA 481 284 308 218 ! - 600
n 2
2 -
g CPriorityAustraliaN - NA NA NA 283 717 244 348 210 198 - 400
=
o
b CPriorityUSAN NA NA NA 415 247
200
CPriorityAustraliaM { NA NA NA 415 247 I
T 0
> a > 2 > > >] v
& & & & & & & & & &
Regions

GR1/GR2: Geographical Regions

EPR1 — EPR4: Energy Provider Regions

NFR1: Non-Federated Region, < Workload W1 € CSP1 placed in CSP1 Region
FR1: Federated Region, & Workload W1 € CSP1 placed in CSP2 Region

FR2: Federated Region, € Workload W2 € CSP2 placed in CSP1 Region
NFR2: Non-Federated Region, < Workload W2 € CSP2 placed in CSP2 Region
NA: Not Applicable

Figure 2.28: Jobs Distribution in Regions

Figure 2.29 shows the carbon emissions for six different settings of the CPriorityN
algorithm. When CPriorityN is configured with fewer DCs and hosts (i.e. minor differences
in Continuum settings but the same Smart Grids), carbon emissions are reduced. The
comparison of CPriorityN with CPriorityAustraliaN (both have different number of EPs)
shows that for the same set of serverless function invocations, the Smart Grid settings
associated with the number of EPs influence the carbon emissions. This trend is observed
because the Cl of each Smart Grid is different and the algorithms take advantage of
multiple EPs to place functions’ invocations to the least Cl region. The CPriorityUSAN and
CPriorityAustraliaN have the same count but different EPs. A similar variation of carbon
emissions is observed for these settings because from Figure 2.28 we can see that one EP
region of the USA gets exactly zero jobs. The final scenario considers the same function
invocations at two different times i.e. Morning vs. Night hours of Australia on the same
day. The Cl values for the same Smart Grid shows significant variation across different time
zones, as Smart Grid energy production and demand fluctuate due to factors such as
weather, time of day, and regions etc.

Therefore, it is necessary to consider the integration and also the guidelines presented in
the formal model because the integrated model has significant potential for reducing
carbon footprints.

Version 1.0 30 April 2025 Page 50 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Carbon Emissions Analysis

25000

g
OA 20000 - 18756 19126
Q) / = —ee L ___ 16196
& 15000 - / 13350
9
(%3]
w
€ 10000 /
w
[
o
2
5 5000 4
@]
o™ o™ ™ 2°
< a0 \,ec,% 656\)\ f;_(
(‘\0{\“ . o"\d\’ 0(\'d
o ¢ 93

Trend Lines
CPriorityN vs CPriorityLessDCN -@- CPriorityN vs CPriorityAustraliaN =@ CPriorityAustraliaN vs CPriorityAustraliaM
=@= CPriorityN vs CPriorityLessHostN =@: CPriorityUSAN vs CPriorityAustraliaN

Figure 2.29: Carbon Emissions Analysis

Version 1.0 30 April 2025 Page 51 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

b) Energy-aware scheduling

As part of the research activities, we wanted to investigate the potential of using different
strategies for carbon- and energy-aware scheduling. More specifically, we wanted to:

- Understand the impact on carbon emissions of different workload placement and
scheduling strategies.

- Investigate the potential of using time-shifting strategies to lower carbon
emissions.

- Investigate the potential of developing relatively simple decision-making
algorithms that can make placement and scheduling decisions in close to real-time.

- Create a simulation environment to investigate and compare the performance of
such different strategies.

As part of these investigations we developed a spatiotemporal carbon-aware scheduling
algorithm for workload placement across heterogeneous platforms, a discrete-event
simulator capable of replaying realistic workloads from the MIT SuperCloud dataset, and
performed a comprehensive empirical evaluation. The following text and experiments are
reproduced with some modifications from a conference paper that will be presented at
the 8th IEEE Conference on Industrial Cyber-Physical Systems (ICPS) in May 2025.

b1. Mathematical model

Given a set of compute clusters C, each cluster ¢ € C is characterized by a CO2 intensity
function i (o), which provides the predicted carbon intensity of using the cluster at a given

time t, measured in grams of CO2 per kilowatt-hour (gCO2/kwWh).

Letting P be a set of processes to be executed, we characterise each individual process
p € P by apower consumption function ep(t), measured in watts (W), which returns the

power required to execute the process at time t. Furthermore, each process p has a
deadline function d(p), specifying the remaining time before it must start. The set of
processes running on cluster ¢ at time t is denoted P (©), while t (®),t. (p)and

submitted start

t,(p) represent the submission, start and end times of the process p, respectively.

The carbon emissions of an individual process can then be calculated as follows:

enar)

E = f e (t) - i (t)dt

tstart(p)

The problem of minimizing the cumulative carbon emissions E for all processes and
clusters can be formulated as the following multi-objective minimization problem:

min E, where E

Il
™M
o

Minimizing over all possible assignments of processes to clusters subject to these
constraints:

(») < (») + d(p), Vp € P,

t
start submitted

Version 1.0 30 April 2025 Page 52 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Y. r(p) < R(c), Vt, Vc € C.
PeP (8)

Here, r(p) represents the resource requirements of a process p, R(c) represents the total
resource capacity of a cluster c. The goal is to develop a scheduling algorithm that
minimizes E, while ensuring all processes meet their respective deadlines and also
respecting resource availability.

b2. Scheduling algorithms and strategies

Several different strategies could be used to reduce carbon emissions, depending on the
type of workload. For high-energy workloads, one would like to do the following:

Strategy 1: Run the most energy-intensive workloads on servers powered by the
lowest CO: intensity energy sources.

Strategy 2: Delay (time-shift) workloads to periods when CO: intensity is lower to
reduce carbon emissions.

For low-energy workloads, one would instead like to use the following strategies:

Strategy 3: When servers powered by low CO: intensity sources are scarce, prioritise
running low-energy workloads on servers with higher CO: intensity.

Strategy 4: When low CO: intensity periods are fully booked and a higher-energy
workload is scheduled, reschedule lower-priority workloads to higher CO: intensity
periods to make room for the higher-energy workload.

It is much more complex to handle mixed-energy workloads, those that vary between
periods of high and low power utilisation. To find a strategy that balances execution time
of the decision-making algorithm with performance, we decided on the following:

Strategy 5: Use the mean power consumption as a representative value for
scheduling decisions.

Based on these observations, we propose two different algorithms for our initial
investigations, leveraging all these strategies to optimize carbon efficiency:

e Greedy cluster selection (Algorithm 1 in Figure 2.30), which immediately assigns
incoming processes to the cluster with the lowest CO2 intensity that also has
available capacity to execute it.

e Time shifting (Algorithm 2 in Figure 2.31), which leverages temporal variations in
CO2 intensity, by delaying execution of processes until the forecasted CO2
intensity of the clusters reaches its lowest level, without exceeding the deadline
for the process. This approach requires predicting the CO2 intensity of clusters
over time and reserving time slots for running processes given their remaining
deadlines before they to be started.

Version 1.0 30 April 2025 Page 53 of 65

SovereignEdge.Cognit-101092711

D4.4 COGNIT Serverless Platform - Scientific Report - d

Al

gorithm 1 Greedy Cluster Selection

1
2
3
4:
5
6

: function SCHEDULE(p, C)
Cavaitable — {¢ € C'| HASFREERESOURCES (¢, p)}
if Cavai]able 7& @ then
Assign p O Celected 4— ATE MiN ey e Pe(Eeurrent)
end if
: end function

. function HASFREERESOURCES(c, p)

RN 7(0) + 3, 1 7(0) < FLC)
: end function

Figure 2.30: Greedy cluster selection algorithm

Algorithm 2 Time Shifting

22:
23:
24:
25:
26:
27:
28:
29:

30:
31:
32
33:
34:
35:
36:

|
2
3
4
5
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

: function SCHEDULE(p, A)

€hest 4— 00, Chest +— NoONe, trest +— None
for c e C do
for t € [teurrent, teurent + d(p)] do
if HASFREERESOURCES(c, t, p, A) then
e + EMISSION(p, ¢, t)
if e < epea then
€hest € €, Chest $— C, Tpest 1
end if
end if
end for
end for
if cpest ## None then
p.planned_time < tpest
p.planned_cluster 4— cpest
Update Process Allocation matrix
for t € [tpest, thest + p-duration) do
Alcwes|[t] < Alcoes][t] + 7(p)
end for
end if
end function

function HASFREERESOURCES(c, tstart, P, A)
for t € [tswrn, tsane + p.duration) do
if A[c][t] +r(p) > R(c) then
return false
end if
end for
return true
end function

function EMISSION(p, ¢, tar)
emission < 0
for ¢ € [tstn, tsan + p.duration) do
emission <— emission + ep () - 7.(t)
end for
return emission
end function

Figure 2.31: Time shifting algorithm

Version 1.0

30 April 2025

Page 54 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Algorithm 2 in Figure 2.31 outlines a method for assigning processes to clusters and
determining an optimal start time by searching the Process Allocation Space. It calculates
the estimated emissions for a process at different time steps to identify the scheduling
option with the lowest emission. The HasFreeResources function checks if a cluster has
sufficient resources available at a specified time in the future. The function Emission
estimates the carbon emissions of running a process at a given time. The Schedule function
finds consecutive time slots between the current time and the process's deadline that
minimize the carbon emission for running the process.

Process reservations (R)

iCluster 1 i—r Process A Process B

i Cluster 2 i—* ProcessD | Process E | Process F

'-)
]

Cluster 1 Process allocation space
Process A
Process B

Cluster 2
Process C
Process F
Process D

t current \ ! Suture

Optimal start time Process F

Figure 2.32: Data structures used by the time-shifting algorithm

The time shifting algorithm could be implemented using a hash table to store lists of
reserved processes for each cluster. Figure 2.32 illustrates the data structures used by the
proposed time-shifting algorithm. Each process is modeled as a data structure containing
its predicted power usage, estimated execution time, planned start time, and assigned
cluster. It is assumed that users specify a walltime, which defines the maximum duration a
process can wait before it must run. From these lists, it is possible to derive a matrix

A: € x T — Zrepresenting the Process Allocation Space, where C is the set of clusters and
T is the set of discrete time steps, which can be used to reserve and determine available
resources at any future time. The entry

Aty = X 1)
peEP (®

represents the amount of resources scheduled to be used on cluster c at the time instance
t.

Version 1.0 30 April 2025 Page 55 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

b3. Experimental setup and evaluation

We wanted to compare the time-shifting strategy with a greedy placement algorithm, that
simply assigns an incoming workload to the cluster with the lowest CO2 intensity with

available processing capacity.

Simulation environment: A discrete event simulator was developed to model workload
execution and evaluate the performance of different placement and scheduling strategies.
The simulator takes a dataset of time series of different workloads and a time series of
CO2 intensity as input and then randomly samples and replays the workloads across a
specified set of clusters. Each cluster is associated with a CO2 intensity log file and a
predefined number of available GPUs, with GPUs serving as the only resource type for
simplicity. The simulator can be configured to use different scheduling algorithms and
outputs a dataset and statistical metrics generated from replaying the traces.

Workload dataset: The workload traces were extracted from the MIT SuperCloud dataset
[6], which contains a large number of time series of workloads that include power
consumption. Note that the dataset does not contain the total energy consumption, but
only the energy consumption of the GPUs collected using the nvidia-smi command. CO2
intensity data for various clusters was obtained from Electricity Maps?, which includes
24-hour predictions of CO2 intensity. The simulated clusters used CO2 intensities from
European regions, Figure 2.33 shows a few examples.

C0» Sweden (SE-SE4) C0; Germany (GE)

CQ; Intensity {gCOeq/kWh)
CQ, Intensity {gCOeq/kWh)

4 : | |
w - — \ » L_d.-—a A

061520 061503 051506 051509 063512 061515 061515 061521 06-1721 061800 061803 051506 OF1509 061812 061813 061813 061871

Figure 2.33: Example CO2 intensities for two European regions.

For the experiments, a dataset of 10,000 workloads was randomly selected from the MIT
SuperCloud dataset. Some statistics for the dataset is shown in Figure 2.34, and a few
example time series are shown in Figures 2.35 and 2.36. Several log files were generated
to record the start times of each workload. To control the rate at which workloads were
replayed, a random waiting time between workloads was sampled from an exponential
distribution. Both the CO2 intensity and workload traces were re-sampled at a resolution
of 1 second, meaning that the Process Allocation Spaces also had a 1-second resolution.

3 https://www.electricitymaps.com

Version 1.0 30 April 2025 Page 56 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Histogram of Mean Power Draw Values Histogram of Total Length Seconds

3500 - - Workload Power vs Length
o
3000 4 i 14000 @ DIDIED@ 00 @ a0
80000
2500 1E0aD 5
=4
8
10000 2 60000
22000 by K
g g
El] =
2| sooo
E’ & o
£ 0000
1500 = 5
500 { g
6000 =
e
k]
1000 F 200
4000 e
0014 ‘ ‘ 2000
Ml °
. | |||||| |!|||Ii§ L i - : 3 S0 75 100 125 150 175 200 225
50 100 150 200 0 20000 40000 60000 BOO0O Mean Power Draw (W)
Mean Power Draw (W) Totsl Length (seconds)
N . .
Figure 2.34: Mean power draw and total length of the different workloads in the dataset.
Workload, idx=3043 Workload, idx=22 Workload, idx=6000
220 2% »0
200 200 00
= 150 = 150 = 154
g E g
o o o
& gL 8 t Lo
£ £ £
50 50 0 |
.] 10000 20000 30000 40000 SOOOR S0000 TOORO 4 o 00 10040 1500 e 2500 3000 3500 g o 1900 2000 000 Acon
Elapsed Time [s] Elapsed Time [s] Elapsed Time [=]

Figure 2.35: Example power consumptions of “high-energy workloads” that use close to the
maximum power.

250 Workload, idx=1 . - Workload, idx=226 . - Workload, idx=1398

00

g
g

2
2
2

g
g

Power Draw [W]
2

Power Draw [W]
Power Draw [W]

Pt e UL

A0 4 [] B0 sb0 FAD 160 1250 106 1753
Elapsed Time [=] Elapsed Time [=]

S
S

o 200 LG

[) e] 20
Elapsed Time [=]

Figure 2.36: Example power consumptions of “mixed-energy workloads” with power usage varying
between high and low throughout its execution.

Experiment 1 - Time-shifting: This experiment evaluated how effective the time-shifting
algorithm was in reducing carbon emissions under no resource constraints. The simulator
was configured to use a single cluster equipped with a large number of GPUs, ensuring
that the cluster never ran out of resources. The CO2 intensity dataset associated with the
cluster was obtained from southern Sweden (SE-SE4). The results presented in Figure 2.37
show that the time-shifting algorithm outperformed the Greedy algorithm, reducing
carbon emissions by 61 %.

Version 1.0 30 April 2025 Page 57 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Figure 2.38 illustrates the CO2 intensity over time and the carbon emissions of the
time-shifting algorithm when process deadlines were set to 24 hours. As can be seen, the
time-shifting algorithm effectively reduced emissions by leveraging periods of low CO2
intensity, which aligns well with the expected behavior. However, when the process
deadlines were reduced to 12 hours and 6 hours, the effectiveness of the time-shifting
algorithm decreased, as shown in Figure 2.37.

Carbon Emissions

—— Greedy Cluster Selection
----- Time Shifting, 6h lookahead
10000 A -
—=~ Time Shifting, 12h lookahead
—— Time Shifting, 24h lookahead
© 8000 |
v
o
9
wn J
0 6000
£
Ll
S 4000+
0
—
(]
&
2000
0 -4

0 50 100 150 200 250 300
Time [h]

Figure 2.37: Results of experiment 1 that shows the cumulative carbon emissions for different
deadlines (6, 12, 24 hours).

Carbon Emissions and CO, Intensity

—— Time Reservation, 24h lockahead
L - 250

4000 4 —— CO2 Intensity
3000 4 -
' - 200

- 150

2000 -

- 100

1000 A

CO2 Intensity (gCOzeq/kWh)

Cumulative Carbon Emission [kg]

i

0 50 ll‘I}O 15’0 260 25|0 360
Time [hours]

=]
n
=]

Figure 2.38: Results of experiment 1 showing time reservations and CO2 intensity over time.

Version 1.0 30 April 2025 Page 58 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Experiment 2 - High Utilization: This experiment aimed to evaluate the performance of
the scheduling algorithms under conditions where the low CO2 intensity clusters become
fully utilized. The simulator was configured with two clusters. The first cluster, referred to
as the green cluster, consisted of 32 GPUs located in northern Sweden (SE-SE1) and
characterized by very low CO2 intensity. The second cluster, referred to as the brown
cluster, consisted of 127 GPUs, and was located in Poland, with significantly higher CO2
intensity. This setup intentionally created an imbalance between green and brown
compute resources and thus provided a controlled environment to assess how effectively
the algorithms utilized renewable energy.

The results, presented in Figure 2.39, indicate that the time-shifting algorithm performed
significantly worse than the simple Greedy algorithm. The reasons for this performance
difference will be discussed in detail in the next section.

Carbon Emissions

—— Greedy Cluster Selection
----- Time Shifting, 6h lookahead
10000 4 —~= Time Sh?ft?ng, 12h lookahead _ -
—— Time Shifting, 24h lookahead
fo)
X 8000 A
c
2
un
W 6000 4
=
L
c
O 4000+
0
—
m
o
2000 -
U -
0 50 100 150 200 250 300
Time [h]

Figure 2.39: Results of experiment 2 (high utilisation scenario) that shows the cumulative carbon
emissions for different deadlines (6, 12, 24 hours). Notice that the time shifting algorithm Ffails to
perform as expected in this scenario.

b5. Conclusions and future work

Our findings show substantial reductions in carbon emissions by prioritizing renewable
energy sources and the high potential of time-shifting workloads to periods of lower
carbon intensity. However, when clusters operate under high utilization, our findings also

Version 1.0 30 April 2025 Page 59 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

show that time-shifting strategies could inadvertently result in significantly higher
emissions. In such scenarios, even simpler greedy algorithms could be more effective.

A limitation of the proposed time-shifting algorithm is its tendency to concentrate
processes on clusters at certain start times. Although this approach reduced emissions in
Experiment 1, it led to unbalanced resource utilization in Experiment 2. As more processes
were reserved for future execution and available time slots became scarce, the algorithm's
flexibility significantly decreased, forcing processes to be executed on the brown cluster,
thus increasing carbon emissions. The Greedy algorithm instead performed better by
consistently prioritizing the green cluster.

This may be due to the randomized dataset and its tendency to naturally balance long- and
short-lived processes, leading to a more even distribution. A simple improvement to the
time-shifting algorithm is to assign new processes to the latest available time slot once
cluster resources become exhausted, allowing it to behave more like the Greedy approach
under high load.

To conclude, the work has proposed a method to reduce emissions by aligning workloads
with periods of low carbon intensity. This can also indirectly contribute to lower
operational costs due to the correlation between carbon intensity and electricity prices.
However, time-shifting may not be suitable for all workloads, particularly real-time
applications.

The time-shifting algorithm could also be adapted to scenarios with processes that must
execute in close to real-time, using CO2 and workload forecasts to provision resources
from cloud/edge clusters with low CO2 intensity.

Further research is needed to investigate these questions in more detail.

Version 1.0 30 April 2025 Page 60 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

3. Conclusions and future work

This development cycle focused on advancing learning models and model retraining
methods (a) To enhance the performance of unsupervised workload classification that
enables system efficiency while allocating resources across the Cloud-Edge continuum, the
deep K-means enables deep feature learning using an autoencoder; which optimizes the
reconstruction loss and clustering loss simultaneously to learn meaningful latent
representations and improves the separation of workloads in a lower-dimensional latent
space. (b) To achieve optimal model accuracy, an auto-adaptive strategy is implemented
that mitigate the data-drift problems and minimizes retraining cost. When system
performance declines, the system retrieves a matching time-series batch from the
knowledge base and loads the hyperparameters from the associated ML model, adjusting
the deployed model to optimize inference accuracy on new data streams.

Three multi-objective optimization algorithms, such as NSGA-Il, MOGA, and SPEA?2 are
designed and implemented, which were formulated as resource optimization as
multiobjective problems by defined objectives, such as minimizing energy usage, reducing
interference, and cost. These algorithms are validated with emulated environments based
MIT supercloud and EU'’s energy usage patterns. Moreover, we model ILP as
multi-objective problems for optimizing similar objectives defined before, while allocating
and load balancing resources across the continuum. To optimize energy efficiency and
sustainability of COGNIT, a formal model is designed, and the integration of the Smart Grid
and Cloud Continuum is initially validated through model-based simulation. To transform
the model into a simulation, mathematical models leveraging container-level granularity,
idle and busy power, and carbon intensity of the Smart Grid are presented. These efforts
contributed significantly to achieving more efficient, energy-aware cloud-edge
infrastructures to realize overall system performance, and enabling more effective,
intelligent orchestration strategies within the COGNIT framework.

In the next cycle, the Cloud-Edge Manager will be extended to provide the capabilities to
dynamically create new edge locations automatically by implementing a Provider
Catalogue and exposing an API for Edge Cluster Provisioning. On the monitoring side,
metrics related to the latency with respect to the Device Client will be stored in order to
be used by the Al-Enabled Orchestrator to anticipate the creation of Serverless Runtime
and/or Edge Cluster; furthermore, methods for intrusion and anomaly detection of Edge
Clusters and Serverless Runtimes will be implemented. Finally, the Plan Executor will be
extended to execute plans produced by the Al-Enabled Orchestrator to perform
operations at the infrastructure level (i.e., creating, scaling and deleting Edge Clusters).

The development and integration of Al-Enabled Orchestrator will be extended to NSGA-III
and approximate gradient evolutionary algorithms to balance the conflicting objectives for
resource optimization while maintaining expected performance and increasing green
energy usage. The Al-Enabled Orchestrator will utilise the extended metrics to predict the
number of serverless runtimes and new edge clusters that will be required for optimal and
cost-effective resource usage. However, the next cycle will explore scalability and carry out
multidimensional experiments by deploying and managing dynamic workloads across the

Version 1.0 30 April 2025 Page 61 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

Cloud-Edge Continuum systems, which will illustrate the scalability, energy-efficiency,
sustainability, and ensuring the expected performance within simulation environments.

Version 1.0 30 April 2025 Page 62 of 65

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

References

[1] Srinivas, N., Deb, K. (1994). Multi Objective optimization using nondominated sorting
in genetic algorithms. Evol. Comput. 2(3), 221-248.

[2] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6, 182-197.

[3] Zeigler, B. P.,, Muzy, A., & Kofman, E. (2018), Theory of Modeling and Simulation:
Discrete Event & Iterative System Computational Foundations, 3rd ed. USA: Academic
Press, Inc.

[4] ContinuumSim GitHub, https://qgithub.com/SovereignEdgeEU-COGNIT/ContinuumSim
(accessed: 17/12/2024)

[5] Electricity Maps, https://www.electricitymaps.com (accessed: 3/12/2024)

[6] Samsi, S. et al., The MIT SuperCloud Dataset, CoRR, vol. abs/2108.02037, 2021.
[Online]. Available: https://arxiv.org/abs/2108.02037

[7] Bauer, A. et al. (2024). The globus compute dataset: An open function-as-a-service
dataset from the edge to the cloud. Future Generation Computer Systems 153,
558-574.

[8] Chang, Y., Bouzarkouna, Z. & Devegowda, D. (2015). Multi-objective optimization for
rapid and robust optimal oilfield development under geological uncertainty.
Computational Geosciences 19, 933-950.

[9] Zzitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto
evolutionary algorithm. TIK report, 103.

[10] Liu, X., & Zhang, D. (2019). An improved SPEA2 algorithm with local search for
multi-objective investment decision-making. Applied Sciences, 9(8), 1675.

[11] Nguyen, C., Bhuyan, M., & Elmroth, E. (2024). Enhancing Machine Learning
Performance in Dynamic Cloud Environments with Auto-Adaptive Models, in Proc.
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), Abu Dhabi, United Arab Emirates, 184-191.

[12] Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive
windowing,” in Proc. SIAM international conference on data mining, in Proc. SIAM
international conference on data mining, 443-448.

[13] Kadwe, Y., & Suryawanshi, V. (2015). A review on concept drift. losr J. Comput. Eng,
17(1), 20-26.

[14] Dempster, A., Petitjean, F., & Webb, G. I. (2020). ROCKET: exceptionally fast and
accurate time series classification using random convolutional kernels. Data Mining
and Knowledge Discovery, 34(5), 1454-1495.

Version 1.0 30 April 2025 Page 63 of 65

https://github.com/SovereignEdgeEU-COGNIT/ContinuumSim
https://www.electricitymaps.com

SovereignEdge.Cognit=101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

[15] Eldin, A. A. et al. (2014). How will your workload look like in 6 years? analyzing
wikimedia's workload, in Proc. IEEE international conference on cloud engineering (pp.
349-354). IEEE.

[16] Urdaneta, G., Pierre, G., & Van Steen, M. (2009). Wikipedia workload analysis for
decentralized hosting. Computer Networks, 53(11), 1830-1845.

[17] Graves, A., & Graves, A. (2012). Long short-term memory. Supervised sequence
labelling with recurrent neural networks, 37-45.

[18] Ali-Eldin, A., Seleznjev, O., Sjostedt-de Luna, S., Tordsson, J., & Elmroth, E. (2014).
Measuring cloud workload burstiness, in Proc. IEEE/ACM 7th International Conference
on Utility and Cloud Computing (pp. 566-572). IEEE.

[19] Reiss, C., Wilkes, J., & Hellerstein, J. L. (2011). Google cluster-usage traces: format+
schema. Google Inc., White Paper, 1, 1-14.

[20] Hieu, N. T., Di Francesco, M., & Yl3-Jaaski, A. (2017). Virtual machine consolidation with
multiple usage prediction for energy-efficient cloud data centers. IEEE Transactions
on Services Computing, 13(1), 186-199.

[21] Tsuruoka, Y., Tsuijii, J. I., & Ananiadou, S. (2009). Stochastic gradient descent training
for [1-reqgularized log-linear models with cumulative penalty, in Proc. Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP (pp. 477-485).

[22] Zhang, T. (2004). Solving large scale linear prediction problems using stochastic
gradient descent algorithms, in Proc. twenty-first international conference on
Machine learning (p. 116).

[23] Karal, O. (2023). Robust and optimal epsilon-insensitive Kernel-based regression for
general noise models. Engineering Applications of Artificial Intelligence, 120, 105841.

[24] Goncalves Jr, P. M., de Carvalho Santos, S. G., Barros, R. S., & Vieira, D. C. (2014). A
comparative study on concept drift detectors. Expert Systems with Applications,
41(18), 8144-8156.

[25] Campello, R. J., Moulavi, D., Zimek, A., & Sander, J. (2015). Hierarchical density
estimates for data clustering, visualization, and outlier detection. ACM Transactions
on Knowledge Discovery from Data (TKDD), 10(1), 1-51.

[26] Salvador, S., & Chan, P. (2007). Toward accurate dynamic time warping in linear time
and space. Intelligent data analysis, 11(5), 561-580.

[27] Kidane, L., Townend, P., Metsch, T., & Elmroth, E. (2022). When and how to retrain
machine learning-based cloud management systems, in Proc. IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp. 688-698).
IEEE.

Version 1.0 30 April 2025 Page 64 of 65

SovereignEdge.Cognit-101092711 D4.4 COGNIT Serverless Platform - Scientific Report - d

[28] Shayesteh, B., Fu, C., Ebrahimzadeh, A., & Glitho, R. (2021). Auto-adaptive fault
prediction system for edge cloud environments in the presence of concept drift, in
Proc. International Conference on Cloud Engineering (IC2E) (pp. 217-223), IEEE.

[29] Masanet, E., Shehabi, A., Lei, N., Smith, S., & Koomey, J. (2020). Recalibrating global
data center energy-use estimates. Science, 367(6481), 984-986.

[30] Patel, Y. S., Townend, P., & Ostberg, P. O. (2023). Formal Models for the Energy-Aware
Cloud-Edge Computing Continuum: Analysis and Challenges, in Proc. International
Conference on Service-Oriented System Engineering (SOSE) (pp. 48-59). IEEE.

[31] Shahrad, M. et al. (2020). Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider, in Proc. USENIX annual technical
conference (USENIX ATC 20) (pp. 205-218).

[32] Azure public dataset, https://github.com/Azure/AzurePublicDataset

[33] Planetlab trace, https://github.com/beloglazov/planetlab-workload-traces

[34] Shen, S., Van Beek, V., & losup, A. (2015). Statistical characterization of
business-critical workloads hosted in cloud datacenters, in Proc. 15th IEEE/ACM
international symposium on cluster, cloud and grid computing (pp. 465-474). IEEE.

[35] Alibaba trace, https://github.com/alibaba/clusterdata

Version 1.0 30 April 2025 Page 65 of 65

https://github.com/Azure/AzurePublicDataset
https://github.com/beloglazov/planetlab-workload-traces
https://github.com/alibaba/clusterdata

	
	Abbreviations and Acronyms
	1. Cloud-Edge Manager
	1.1 [SR4.6] Plan Executor

	
	2. AI-Enabled Orchestrator
	2.1 [SR5.1] Building learning models
	2.1.1 AI/ML Models
	2.1.2 Data
	2.1.3 Results and Analyses
	2.1.4 Retraining method for ML-based predictive behavioral forecasting

	2.2 [SR5.2] Smart Management of Cloud-Edge Resources
	2.2.1 Cloud-Edge resource optimization algorithms
	2.2.2 System Modelling and Simulations

	3. Conclusions and future work
	This development cycle focused on advancing learning models and model retraining methods (a) To enhance the performance of unsupervised workload classification that enables system efficiency while allocating resources across the Cloud-Edge continuum, the deep K-means enables deep feature learning using an autoencoder; which optimizes the reconstruction loss and clustering loss simultaneously to learn meaningful latent representations and improves the separation of workloads in a lower-dimensional latent space. (b) To achieve optimal model accuracy, an auto-adaptive strategy is implemented that mitigate the data-drift problems and minimizes retraining cost. When system performance declines, the system retrieves a matching time-series batch from the knowledge base and loads the hyperparameters from the associated ML model, adjusting the deployed model to optimize inference accuracy on new data streams.
	
	Three multi-objective optimization algorithms, such as NSGA-II, MOGA, and SPEA2 are designed and implemented, which were formulated as resource optimization as multiobjective problems by defined objectives, such as minimizing energy usage, reducing interference, and cost. These algorithms are validated with emulated environments based MIT supercloud and EU’s energy usage patterns. Moreover, we model ILP as multi-objective problems for optimizing similar objectives defined before, while allocating and load balancing resources across the continuum. To optimize energy efficiency and sustainability of COGNIT, a formal model is designed, and the integration of the Smart Grid and Cloud Continuum is initially validated through model-based simulation. To transform the model into a simulation, mathematical models leveraging container-level granularity, idle and busy power, and carbon intensity of the Smart Grid are presented. These efforts contributed significantly to achieving more efficient, energy-aware cloud-edge
	

	References

