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Abstract

COGNIT is an Al-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
Continuum that enables the seamless, transparent, and trustworthy integration of data
processing resources from providers and on-premises data centers in the cloud-edge
continuum, and their automatic and intelligent adaptation to optimise where and how
data is processed according to application requirements, changes in application demands
and behaviour, and the operation of the infrastructure in terms of the main environmental
sustainability metrics. This document describes the research and development carried out
in WP4 “Al-enabled Distributed Serverless Platform and Workload Orchestration” during
the Third Research & Innovation Cycle (M16-M21, according to the new COGNIT
architecture, see details in D2.4), providing details on the status of a number of key
components of the COGNIT Framework (i.e. Cloud-Edge Manager and Al-Enabled
Orchestrator) as well as reporting the work related to supporting Energy Efficiency
Optimization in the Multi-Provider Cloud-Edge Continuum.
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Executive Summary

This is the third “COGNIT Serverless Platform - Scientific Report” that has been produced
in WP4 “Al-enabled Distributed Serverless Platform and Workload Orchestration”. It
describes in detail the progress of the software requirements (revised according to the
COGNIT Architecture 2.0) that have been active during the Third Research & Innovation
Cycle (M16-M21) in connection with these main components of the COGNIT Framework:

Cloud-Edge Manager

SR4.3 Serverless Runtime Deployment:

The Cloud-Edge Manager must be able to deploy Serverless Runtimes as
Virtualized Workloads within an Edge Cluster.

SR4.4 Metrics, Monitoring, and Auditing:

Edge-Clusters monitoring, Serverless Runtimes metrics collection and
continuous security assessment.

SR4.5 Authentication & Authorization:

Authentication and authorization mechanisms for accessing cloud-edge
infrastructure resources by the devices for offloading workloads.

Al-Enabled Orchestrator

SR5.1 Building Learning Models:

Provide Al/ML models based on collected metrics from the Cloud-Edge
Manager monitoring service related to Edge Clusters, Serverless Runtimes, and
infrastructure usage.

SR5.2 Smart management of Cloud-Edge resources:

Al-Enabled Orchestrator is responsible for managing and optimizing the
lifecycle of Edge Clusters and serverless runtimes within Edge Clusters
according to the application requirements, infrastructure and virtual resource
usage, and energy-aware policies.

This deliverable has been released at the end of the Third Research & Innovation Cycle
(M21), and will be updated with incremental releases at the end of each research and
innovation cycle in M27, and M33.
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Abbreviations and Acronyms

AE Auto Encoder
Al Artificial Intelligence
Al-O Al-Enabled Orchestrator
API Application Programming Interface
CLI Command Line Interface
CMA Carbon-aware Model Agent
CPCA Common Principal Component Analysis
DB Database
DL Deep Learning
EVPN Ethernet VPN
FaaS Function as a Service
FFNN Feed-Forward Neural Network
GC Global Controller
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HTTP Hypertext Transfer Protocol
IDEC Improved Deep Embedded Clustering
IP Internet Protocol
IPAM IP Address Management
JSON Javascript Object Notation
KVM Kernel Virtual Machine
LC Local Controller
LSTM Long Short-Term Memory
MAPE-K Monitoring, Analysis, Planning, Execution, and Knowledge
Mi Million Instructions
MIPS Million Instructions Per Second
ML Machine Learning
MSE Mean Squared Error
MTS Multivariate Time Series
NSGA-II Non-dominated Sorting Genetic Algorithm II
(01 Operating System
QoS Quality of Service
RAPL Running Average Power Limit
REST Representational State Transfer
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RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SLA Service Level Agreement

SLO Service Level Objective

SoC State of Charge

SVD Single Value Decomposition
TCN Temporal Convolutional Network
VM Virtual Machine

Version 1.0 11 November 2024 Page 6 of 46



SovereignEdge.Cognit=101092711 D4.3 COGNIT Serverless Platform - Scientific Report - ¢

1. Cloud-Edge Manager

Cloud-Edge manager is responsible for autonomous management of distributed
cloud-edge continuum resources according to the application demand and availability of
resources. This development cycle has made progress related to three software
requirements, namely, SR4.3 Serverless Runtime Deployment, SR4.5 Authentication &
Authorization. Details of each software requirement are reported in Deliverable D2.4.

1.1 [SR4.3] Serverless Runtime Deployment

1.1.1 Cross-Site Live Migration

The cross-site live migration of serverless runtimes is key in order to avoid interruption in
executing functions offload from the Devices.

Using OpenNebula OneProvision, the Cloud/Edge Manager frontend (implemented by an
OpenNebula frontend) can provision hypervisor nodes on different regions of several
cloud providers. When performing this operation, two OpenNebula clusters will be
created, each with its own set of datastores, networking and hypervisor hosts.

The networking created for each OpenNebula cluster has two components:

e Public network: This public facing network is implemented using the OpenNebula
IPAM driver under the hood. Once set up, it allows, through host natting, to have
VMs with public IPs from a requested range.

e Private network: A network template that can be used to create a VXLAN private
network in EVPN mode. This private network creates an overlay between the
provision of KVM hosts.

The VMs deployed on each provision do not share a physical network, so they cannot be
migrated between KVM hosts existing in different provisions. To enable this, a private
network using VXLAN with EVPN mode needs to be created. This network differs from
the one created as a virtual network template when issuing the provision. EVPN is required
because multicast traffic is not permitted over the Internet, which is the physical network
that connects the KVM hosts from different provisions. A high level view of the network
deployment to allow cross site migration is presented in Figure 1.1.
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Figure 1.1: Cross-site Migration Network setup for OpenNebula clusters

When creating the network, each KVM node must be set up as an FRR routing daemon.
The information coming from these daemons will be spread to the rest of the hypervisors
using route reflectors. The KVM nodes need to reach the route reflector and vice-versa.
Once a VM is deployed, it is connected to a L2 network encapsulated over the Internet.
When migrating the VM to another host, the VM will remain in the same network. If the
different KVM hosts do not share the same network interface names, the bridge that
represents the VXLAN needs to be pre-created on each host with its PHYDEV. This
particular configuration of the Cloud/Edge manager is applied by OpsForge in the
automatically deployed Edge Clusters.
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1.2 [SR4.4] Metrics, Monitoring, Auditing
Description

This cycle we focused on analysing the energy metrics mechanism based on Scaphandre
that has been developed in the two first cycles, to explore the options available to extract
energy consumption from specific software processes running on the Serverless Runtime.
This information is key to provide the Al-Enabled Orchestrator with additional context on
the consumption of different delegated functions coming from the Device Clients, in order
to optimise the placement of Serverless Runtimes. After this analysis, we have settled on
the following approach:

e Under an energy consumption perspective, every Serverless Runtime instantiated
by the Cloud-Edge Manager can be considered a process. Scaphandre can compute
the energy consumption for every process (i.e. every VM) as well as the host
aggregated energy usage. In order to compute every Serverless Runtime internal
process energy usage, a small agent can be developed to run on every VM, that
computes the amount of CPU used by every process during a customizable amount
of time and ponderate it with the overall Serverless Runtime energy consumption.
In this way we may not only know the energy of every process dedicated to run
offloaded functions, but also know if there is another system process or daemon
that may be using too many resources on the Serverless Runtime.

In the next cycle we plan to develop this agent to extract per function energy consumption
metric, and make it available to the Al-Enabled Orchestrator.

1.3 [SR4.5] Authentication and Authorization

1.3.1 Biscuit integration

The Biscuit auth driver for OpenNebula has been developed to allow the use of Biscuit
tokens as a replacement for a user password when issuing API Calls.

Authentication in OpenNebula

In the OpenNebula database, there are two values saved for each user, they are username
and password. When the driver used for authentication is of type ‘core’ (authenticated
without an external auth driver), the password value holds the SHA256 hash of the user’s
password. In case we are using another authentication method, this password field can
contain any other information we can use to recognize a user.

In this Biscuit driver, the password value is not a password per se, but a public key is used
to verify the token origin. Each user can generate tokens with their own private key, and
register their public key as their password when creating the user. This public key will
authenticate the tokens signed by the private key. This flow is depicted in Figure 1.2.
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Figure 1.2.: Authentication Flow in OpenNebula Biscuit Integration

Deployment Details

This integration has not been contributed to the upstream OpenNebula repository,
although there are plans to add it as it has been considered of interest for the general
OpenNebula community.

Meanwhile it is available as an OpenNebula extension in the COGNIT Github organisation.
It requires installing the Biscuit CLI on the Cloud/Edge Front-end, which can be achieved by
simply downloading and making it available as introduced in Figure 1.3.

Unset

wget
https://github.com/biscuit-auth/biscuit-cli/releases/download/0.4.2/biscuit-
0.4.2-x86_64-unknown-1linux-musl.tar.gz

tar -xf biscuit-0.4.2-x86_64-unknown-linux-musl.tar.gz

mv biscuit-0.4.2-x86_64-unknown-linux-musl/biscuit /usr/bin/

Figure 1.3: Installing Biscuit CLI
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Afterwards the Cloud/Edge Frontend needs to have the relevant integration files
available. This is achieved by simply copying the ‘authentication’ driver into the
OpenNebula auth folder, in /var/1ib/one/remotes/auth. To be able to use the new
driver we need to add its name to the list of enabled drivers in the OpenNebula main
daemon configuration Ffile, a relevant excerpt is shown in Figure 1.4, and restarting all the
OpenNebula services.

Unset
AUTH_MAD = [
executable = "one_auth_mad",
authn = "ssh,x509, 1dap, server_cipher, server_x509, length, biscuit”

Figure 1.4: Activating the Biscuit Authentication driver.

Usage Details

In this section we are going to show a usage example to better understand how Biscuit and
the Cloud-Edge Manager interact with each other and how they are integrated. Figure 1.5
shows how to create a user using the biscuit driver, provided that OpenNebula is correctly
configured.

Unset
Spublic_key=41e77e842e5c952a29233992dc8ebbedd2d83291a89bb0eec34457e723a69526
oneuser create dannl Spublic_key --driver biscuit

root@ubuntu2204-92 :~# oneuser list

ID NAME
ENAB GROUP AUTH VMS MEMORY CPU
2 dann1
yes users biscuit 0 / = oM / 0.0 / -
1 serveradmin
yes oneadmin server_c 0 / - oM / 0.0 / -

0 oneadmin
yes oneadmin core - - -

Figure 1.5: Create a user with Biscuit auth driver

$public_key is the public key used to verify the biscuit token sent by the user instead of
the regular password auth. The private key must be kept safe by the user. The public key
will act as the password for the user entry into the OpenNebula database. See here how to
generate a keypair to sign tokens.
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To use the driver to authenticate the user, a Biscuit token must be sent on the password
argument when issuing an API Call. The token must contain the username in the authority
block. Once the token is generated, it will act as a password when issuing API calls, as seen
on Figure 1.6.

Unset

oneuser list --user dannl --password
En4KFAOFZGFubjEYAyIJCgcIChIDGIAIEiQIABIgv37UGwg81SQNV1EgG3IN7JbJjhlgQh9eRU_fe
DPmmFwUaQIsybrP_UtZuvv@joaHvesZGNnZ5vFoxMCc18gtNBSFfrKDeNf3KBnSvs1Egd3CUegc5
BNhxkpli4vF5d4bsCQ4iIgogkIek fE40VgomPT7RZhuZCTO9DHPukbrDQeHGhGlkvbk=

ID NAME

ENAB GROUP AUTH VMS MEMORY CPU
2 danni

yes users biscuit 0 / = oM / 0.0 / =

Figure 1.6. Using Biscuit token as Cloud/Edge Manager password
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2. Al-Enabled Orchestrator

Al-Enabled Orchestrator (Al-O) is responsible for smart management of distributed
cloud-edge resources according to the dynamic workloads, infrastructure policies, and
energy usage policies. You can refer to Deliverable D4.2 for detailed description about the
Al-Enabled Orchestrator. This development cycle makes progress on the model
developments and AlOps pipeline for training, validation and model repository. However,
another progress is being carried out on energy-aware continuum systems modelling and
its validation with simulated environments.

2.1 [SR5.1] Building learning models
In this development cycle, Al-O is implemented and integrated with the AlOps pipelineg, in
particular developing Al/ML models for resource prediction.

2.1.1 Al/ML Models

Deep learning (DL) models [13] have shown superior performance over classical machine
learning models, particularly in prediction tasks in time series data, though they are often
more data-hungry and computationally expensive. For instance, Long Short-Term Memory
(LSTM) [1, 9] and Gated Recurrent Unit (GRU) [12] networks belong to the category of
recurrent neural networks (RNNs), which are specifically designed to capture complex
temporal patterns and regularities in sequential data. These mechanisms are extensively
employed in Transformer models, which can enhance the analysis of time series data for
various downstream tasks, including prediction.

As part of Al/ML model development, the Al-Orchestrator (Al-O) will maintain a model
repository tailored to these diverse downstream tasks. Models are selected at runtime
according to the task at hand, allowing the orchestrator to adapt to dynamic needs. The
Al-O can leverage four deep learning models for prediction tasks: 1) Long Short Term
Memory (LSTM), 2) Feed-Forward Neural Network (FFNN), 3) Temporal Convolutional
Network (TCN), and 4) Gated Recurrent Unit (GRU).

1) LSTM

Long Short-Term Memory (LSTM) [1, 9] networks are designed to capture
dependencies in sequential data over long periods of time, making them ideal for
time series forecasting in cloud and edge environments. LSTMs address the
vanishing gradient problem often faced by traditional RNNs, enabling them to
retain important information over extended sequences. By learning from historical
workload data, LSTM models can effectively predict future workloads, which aids in
optimizing resource allocation and balancing computational loads across
cloud-edge infrastructure. This capability is essential for tasks like workload
prediction, proactive migration, and resource optimization. An example LSTM block
and LSTM chain are illustrated in Figure 2.1 and 2.2, respectively.
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Figure 2.1: Architecture of a LSTM block.
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Figure 2.2: A LSTM chain consisting of several LSTM blocks.

LSTMs can also model non-linear dependencies between different metrics, such as
CPU usage, memory consumption, and network traffic, making them highly suited
for workload characterization. Furthermore, their ability to handle irregular
intervals and multi-step forecasting makes LSTM networks a powerful tool for
predictive maintenance and energy-aware placement in distributed cloud-edge
continuum. Despite being computationally expensive, their high accuracy and
ability to generalize well to unseen data justify their usage in performance-critical
environments like Al-Enabled orchestrators.

2) FFNN

Feed-Forward Neural Networks (FFNNs) [10] are one of the simplest and most
widely used types of neural networks. Unlike recurrent networks, FFNNs do not
have any temporal dependencies, meaning they process input datain a
straightforward manner from input to output layers. This makes them suitable for
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tasks where dependencies between consecutive time steps are minimal or can be
summarized in aggregated features. In the context of cloud-edge workload
management, FFNNs can efficiently perform workload prediction and estimate
resource utilization, where the focus is on capturing non-sequential patterns in the
data. An example FFNN is presented in Figure 2.3.

—> Yn+1

Figure 2.3: An example FFNN.

FFNNs excel when processing large datasets due to their parallel architecture,
making them faster and computationally cheaper compared to more complex
models like LSTMs and Temporal Convolutional Networks (TCNs). They are also
easier to train and fine-tune, which can be advantageous in real-time
decision-making within the orchestrator.

For example, FFNNs can be used to rapidly predict workloads based on resource
needs in resource utilization patterns. While FFNNs may not capture temporal
dependencies, they remain a valuable option for quick decision-making tasks and
scenarios where simplicity and speed are prioritized over deep temporal analysis.

3) GRU

Gated Recurrent Unit (GRU) [12] networks are a type of recurrent neural network
(RNN) that have been developed as a simpler alternative to Long Short-Term
Memory (LSTM) networks. GRUs share a similar architecture but have fewer
parameters and a more streamlined structure, making them computationally less
expensive while still capable of capturing temporal dependencies in sequential
data. Like LSTMs, GRUs are well-suited For time series forecasting, especially when
resource efficiency is a priority, such as in edge computing environments.

The key difference between GRU and LSTM networks lies in the gating mechanism.
GRUs use a combined update gate and do not maintain a separate memory cell,
making them faster to train while still retaining sufficient long-term dependencies
in the data. This makes GRU a promising model for real-time workload prediction,
where balancing performance and computational overhead is critical. GRU's ability
to process sequential data with fewer computations makes it particularly useful in
resource-constrained environments like the cloud-edge continuum. Despite being
simpler, GRUs can still capture non-linear relationships between metrics such as
CPU usage, memory consumption, and network traffic, making them effective in
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tasks like workload prediction, dynamic resource allocation, and latency-sensitive
applications. An example GRU block is illustrated in Figure 2.4.

Figure 2.4: Architecture of a GRU block.

4) TCN

Temporal Convolutional Networks (TCNs) [11] provide a novel approach to time
series prediction by leveraging convolutional layers instead of recurrent neural
network-based architectures. Unlike LSTMs, TCNs use 1D dilated causal
convolutions to capture temporal dependencies, which allows them to process long
sequences of data more efficiently. This makes TCNs particularly effective in
modelling complex patterns over long time horizons while maintaining a simpler,
more parallelizable architecture. In the Al-Enabled Orchestrator, TCNs can be
applied to tasks such as long-term workload forecasting and trend analysis, where
both local and global temporal features are essential. An example TCN is presented
in Figure 2.5.

TCNs are designed to maintain the sequence order and prevent data leakage from
future time steps, ensuring that predictions are based solely on past data.
Additionally, their residual connections improve training stability, making TCNs a
competitive alternative to LSTMs, especially in environments with high-dimensional
data like cloud-edge infrastructures. TCNs can outperform traditional RNN-based
models in terms of both speed and accuracy, particularly in tasks like resource
demand prediction, capacity planning, and proactive scaling. Their ability to capture
temporal dependencies across multiple time scales makes TCNs a versatile and
powerful choice for orchestrating dynamic cloud and edge resources.
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Figure 2.5: An example TCN.

2.1.2 Data

These models have been developed, tuned, validated and integrated with the AlOps
pipeline in COGNIT using the GWA-t-12 Bitbrains public dataset, which provides
comprehensive performance metrics from virtual machines in a distributed datacenter.
Also, they are validated with testbed and emulator data. For more details on the additional
data sources and emulator setup, which was used as well as will be used in future
evaluations, please refer to Deliverable D4.2.

2.1.3 Results and Analyses

In this part, we describe our approach to implementing and training various neural
network architectures for the resource consumption prediction tasks. Our objective was to
compare the performance of four different models—LSTM, GRU, FFNN, and TCN—on
predicting resource consumption metrics, including CPU usage, memory usage, disk write
speed, and network activity.
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a) Data Preparation and Preprocessing

e Data Loading: We began by loading the multivariate time series data for the
aforementioned metrics.

e Data Scaling: The data was scaled to normalise the feature values and ensure
consistent model training.

e Sequence Creation: Using a sequence length of 99 and a prediction length of 1, we
created input-output pairs suitable for training time series models.

e Training and Testing Split: The data was split into training and testing sets with an
80:20 ratio.

b) Model Architecture
We selected four neural network architectures suited for time series forecasting:

e LSTM: The Long Short-Term Memory model (LSTM) is configured with 2 layers, an
input size of 4, a hidden size of 64, and an output size of 4. This structure allows it
to retain long-term dependencies in the data, making it effective for sequential
data.

e GRU: The Gated Recurrent Unit (GRU) model has a similar configuration to the
LSTM, with an input size of 4, hidden size of 64, and output size of 4. GRUs are more
computationally efficient than LSTMs while still capturing essential time
dependencies.

e FFNN: The Feedforward Neural Network (FFNN) model uses a fully connected
architecture. Its input size was adjusted to account for sequence length, enabling it
to process flattened time series data. The hidden layer dimension is set to 64.

e TCN: The Temporal Convolutional Network (TCN) model consists of three
convolutional layers, with 64 filters in each layer. The kernel size is set to 2, and the
model uses dilation to capture long-term dependencies without recurrent
connections.

¢) Training and Hyperparameters
All models were trained using the following hyperparameters:

Batch Size: 64

Learning Rate: 0.001

Epochs: 1 (for demonstration purposes; could be increased for more robust
performance analysis).

Loss Function: Mean Squared Error (MSE).

Optimizer: Adam, selected for its adaptive learning rate, which helps in optimising
the model efficiently.

d) Evaluation Process

e Prediction Performance: We evaluated each model on the test set using Root
Mean Squared Error (RMSE) for each resource consumption metric. The RMSE
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comparison of all models is provided in Table 2.1. Additionally, we calculated the
average prediction time per sample to assess model efficiency which is presented
in Table 2.2.

e Visualisation: For each model, we plotted the predicted vs. actual values for a
random sample of 100 test instances to visually inspect the model's performance
across metrics.

This experimental setup enabled a comprehensive comparison of each model's
performance on resource consumption metrics prediction, leading to detailed insights
starting with our analysis of the following models:

1) LSTM

In addition, comparison of the model predictions compared to the ground truth is
provided in Figure 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12 and 2.13 by considering 100
random samples for the illustration. The Long Short-Term Memory (LSTM) model
demonstrates strong performance in predicting several key workload metrics.
Specifically, LSTM outperforms the Feed-Forward Neural Network (FFNN) in
predicting Memory Usage and Disk Write with RMSE values of 0.0018 and 0.0024,
respectively, showcasing its ability to capture complex temporal dependencies in
time-series data. The green lines in Figure 2.6 and 2.7 represent the ground truth,
while the purple dashed lines indicate the predicted values. The closeness of these
two lines for Memory and CPU usage highlights the LSTM's accuracy in following
the actual trends over time. This suggests that LSTM is particularly effective in
scenarios where long-term dependencies or sequential patterns are crucial, such as
resource allocation and proactive scaling in cloud-edge environments.

On the other hand, LSTM's prediction for CPU Usage and Network Received
metrics, while still competitive, shows a slightly higher RMSE compared to FFNN in
the case of CPU Usage (RMSE 0.0392). However, for Network Received throughput,
both models performed similarly, with an RMSE of 0.0004, indicating that LSTM is
capable of maintaining accuracy across different types of workload metrics. The
visualizations indicate that while the LSTM's predictions occasionally deviate from
the actual values, it still manages to capture the general patterns of CPU spikes and
drops. This makes it a strong candidate for tasks where understanding periodic
fluctuations in workload is critical for optimization.
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Memory Predictions vs Ground Truth for 100 Random Test Samples
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Figure 2.6: Illustration of memory usage vs the prediction by LSTM.
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Figure 2.7: lllustration of CPU usage vs the prediction by LSTM.

2) FFNN

The Feed-Forward Neural Network (FFNN), despite being a simpler model,
demonstrates notable performance, particularly in predicting CPU Usage, where it
outperforms LSTM with a lower RMSE of 0.0245. This indicates that FFNN, which
does not rely on capturing sequential dependencies, can be highly effective in
predicting non-temporal metrics or those with fewer long-term dependencies.
Figure 2.8 and 2.9 corresponding to Memory and CPU Usage show a good overlap
between the FFNN predictions (purple dashed line) and the actual values (green
line), suggesting that FFNN is capable of capturing the immediate fluctuations and
short-term variations in the data, making it suitable for real-time decision-making
tasks in resource management.

However, FFNN struggles more with predicting Memory Usage and Disk Write, with
RMSE values of 0.0021 and 0.0034, respectively, higher than those of the LSTM.

This suggests that the FFNN may have difficulty capturing more complex temporal
relationships that are crucial for metrics with a more sequential nature. In contrast,
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for Network Received, the FFNN's performance is very similar to LSTM, with only a
marginal difference in RMSE (0.0005 vs. 0.0004), implying that both models are
equally competent in predicting network-related metrics, where immediate
input-output relationships might dominate over temporal dependencies.

06 CPU Predictions vs Ground Truth for 100 Random Test Samples
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Figure 2.8: Illustration of memory usage vs the prediction by FFNN.

Memory Predictions vs Ground Truth for 100 Random Test Samples
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Figure 2.9: Illustration of CPU usage vs the prediction by FFNN.

3) GRU

The RMSE comparison of the GRU model is provided in Table 2.1, alongside the
other models (LSTM and FFNN). The predictions generated by the GRU model are
compared to the ground truth in Figures 2.10 and 2.11, using 100 random samples
forillustration. Overall, GRU demonstrated competitive performance across several
workload metrics, although it did not outperform the LSTM and FFNN in most
cases. Specifically, GRU produced an RMSE of 0.0623 for CPU Usage, which is higher
than both LSTM and FFENN, indicating that it struggled more with capturing
long-term dependencies in CPU usage data. The ground truth (green lines) and
predicted values (purple dashed lines) for CPU usage, shown in Figure 2.10, reveal
that while GRU Ffollows the general trend, it has difficulty aligning with CPU spikes
and drops as accurately as the LSTM and FFNN.
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For Memory Usage, GRU yielded an RMSE of 0.0027, which is slightly higher than
LSTM's 0.0018 and FFNN's 0.0021. This suggests that GRU can still capture
short-term dependencies effectively fFor memory predictions, though LSTM
outperforms it in capturing the more complex temporal dynamics. Similarly, for
Disk Write throughput, GRU's RMSE was 0.0050, higher than both LSTM and FFNN,
indicating that it may not be the best model for storage-related predictions.

Lastly, For Network Received throughput, GRU achieved an RMSE of 0.0006, which

is close to LSTM and FFNN but still slightly higher. While the overall trend is
captured, results indicate that GRU occasionally diverges from the actual values.
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Figure 2.10: Illustration of CPU usage vs the prediction by GRU.
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Figure 2.11: Illustration of memory usage vs the prediction by GRU.
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4) TCN

The RMSE comparison of the TCN model is provided in Table 2.1, alongside the
other models (LSTM, FFNN, and GRU). The predictions generated by the TCN model
are compared to the ground truth in Figures 2.12 and 2.13, using 100 random
samples for illustration. TCN demonstrated competitive performance across
several workload metrics, outperforming most models in some cases, particularly in
Memory Usage predictions. Specifically, TCN produced an RMSE of 0.0483 for CPU
Usage, which is lower than GRU's 0.0623 but higher than both LSTM's 0.0392 and
FFNN's 0.0245. As shown in Figure 2.12, the ground truth (green lines) and
predicted values (purple dashed lines) for CPU usage reveal that TCN aligns
reasonably well with the general trend but encounters slight difficulties in tracking
sharp CPU spikes, similar to GRU.

For Memory Usage, TCN excelled with an RMSE of 0.0012, which is the lowest
among all models, indicating that it can effectively capture short-term
dependencies and temporal dynamics in memory data. This is clearly illustrated in
Figure 2.13, where the predicted memory usage closely follows the ground truth
across random samples.

In terms of Disk Write throughput, TCN produced an RMSE of 0.0046, which is lower
than GRU but higher than LSTM and FFNN. While the model captures the overall
trend of disk usage, it may face challenges in predicting rapid fluctuations in
storage-related metrics.

Lastly, for Network Received throughput, TCN achieved an RMSE of 0.0007, which
is slightly higher than all other models but still comparable. Though the differences
are minimal, TCN occasionally diverges from the true values, especially when
network traffic undergoes abrupt changes. Overall, TCN provides strong
performance and offers a reliable option for temporal data prediction, particularly
for memory and CPU usage.
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Figure 2.12: Illustration of CPU usage vs the prediction by TCN.
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Memory Predictions vs Ground Truth for 100 Random Test Samples
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Figure 2.13: Illustration of Memory usage vs the prediction by TCN.
Metric LSTM RMSE FFNN RMSE GRU RMSE TCN RMSE
CPU Usage [%] 0.0392 0.0245 0.0623 0.0483
Memory Usage 0.0018 0.0021 0.0027 0.0012
[KB]
Disk Write [KB/s] 0.0024 0.0034 0.0050 0.0046
Network Received 0.0004 0.0005 0.0006 0.0007
[KB/s]

Table 2.1: Comparison of LSTM, FFNN, GRU, and TCN over RMSE
for different system metrics.

Time Analysis

The time required for making predictions is a critical factor when selecting models for
real-time or near-real-time applications in cloud and edge environments. The Prediction
Time in milliseconds for LSTM, FFNN, and GRU models, shown in Table 2.2, provides insight
into their computational efficiency and scalability under various operational constraints.

e FFNN stands out as the fastest model with a prediction time of 0.14 milliseconds.
This is expected, as the FFNN does not involve recurrent connections or sequential
dependencies, making it highly efficient for making predictions. Its simpler
architecture allows it to process inputs and generate outputs with minimal
computational overhead, making it an excellent choice for applications where
prediction speed is crucial and the workload patterns are non-temporal or
short-term.
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e LSTM and GRU, on the other hand, show significantly higher prediction times of
7.39 milliseconds and 7.54 milliseconds, respectively. Both models are designed to
capture temporal dependencies in the data, which comes at the cost of increased
complexity. While LSTM's prediction time is marginally lower than GRU, the
difference is negligible in most real-time systems. These models are ideal when it is
critical to capture long-term dependencies in workload patterns, even though they
are slower compared to FFNN. The added complexity in these models makes them
suitable for scenarios where accuracy in temporal prediction outweighs the need
for ultra-low latency in predictions.

e TCN strikes a balance between recurrent models like LSTM/GRU and feedforward
models like FFNN. With a prediction time of 1.38 milliseconds, it is significantly
faster than both LSTM and GRU, while maintaining its capability to capture
temporal dependencies. TCN's architecture allows for parallel processing across
temporal layers, resulting in a more efficient prediction process compared to
recurrent networks. This makes TCN an attractive choice for tasks that require a
compromise between speed and the need to capture sequential data, offering
better scalability in time-sensitive applications than LSTM or GRU without
sacrificing much predictive accuracy.

Model LSTM FFNN GRU TCN

Prediction Time (msec) 7.39 0.14 7.54 1.38

Table 2.2: Average prediction time per instance for each model.

2.2 [SR5.2] Smart Management of Cloud-Edge Resources

Managing cloud-edge resources is key in Al-Enabled Orchestrators across the continuum
by employing the outcomes of Al/ML models such as prediction of workload with respect
to dynamic resource consumption (CPU, memory, network), energy consumption. The
systems are modelled in two ways, one is straightforward development of algorithms for
resource optimization and integration with COGNIT testbed, and on the other hand, in
order to understand the scalability of the system across the continuum, modelling and
simulations are explored and reported in subsection 2.2.2.

2.2.1 Cloud-Edge resource optimization algorithms

Optimising cloud-edge resources is crucial to achieve optimal resource management
across the continuum by adapting the dynamic workload and infrastructure policies. In this
development cycle, interference and energy aware resource optimization is explored.

a) Metrics

Metrics fFor application and infrastructure are collected by Cloud-Edge manager, which are
utilised to develop optimization algorithms and taking into consideration some constraints
such as latency, green energy host.
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b) Algorithms

b1. Energy-interference optimization algorithm:

Optimising energy and interference is key for managing cloud-edge resources while
ensuring execution, migration, scaling of serverless runtimes. Here, the first objective is to
maximise the green energy host usage and minimise the workload interference according
to the dynamic load, which is indeed conflicting objectives to meet. This section details an
advanced algorithm that employs predictive models, multi-objective optimization via
NSGA-Il, and energy-aware scheduling mechanisms to achieve these goals in
heterogeneous continuum environments.

b1.1 Predict interference with Al/ML models

In these continuum scenarios, application performance can be significantly impacted by
resource contention, where virtual machines (VMs) or serverless runtimes (SR) share
physical resources like CPU, memory, and network bandwidth. This resource sharing leads
to interference, reducing performance predictability and complicating resource allocation.

To predict and mitigate interference, machine learning (ML) models are trained using
historical data on workloads and resource usage, which enables more proactive scheduling
decisions.

Define the following variables for interference prediction:
Wl,(t): Resource usage vector at time ¢ for SR j, encompassing CPU, memory, and I/O

demands.
QoS (t): Quality of Service level for SR j, measured by latency and throughput

requirements.
I(t): Predicted interference metric at time ¢, which represents the degree of resource
contention among co-hosted VMs.

Using this setup, the ML model’s output Y(t) (predicted interference) is computed as:

1®) =W (), QS () foralli,
where fis the model trained to capture the relationship between workload characteristics

and resource interference. Real-time predictions oF/I\(t) are essential for minimising
latency deviations and for adjusting VM allocations to avoid performance degradation due
to interference [16].

b1.2 NSGA-II: Minimise Interference and Maximise Green Energy Usage

The Non-dominated Sorting Genetic Algorithm Il (NSGA-II) is employed to balance two key
objectives: minimising interference and maximising the use of green energy resources.
NSGA-Il operates by iteratively refining a set of candidate solutions through a process of
selection, crossover, and mutation to achieve Pareto-optimal solutions [15].
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1) Multi-Objective Optimization with NSGA-II
The Non-dominated Sorting Genetic Algorithm Il (NSGA-II) is a multi-objective evolutionary
algorithm used to address conflicting goals in complex optimization problems. Here,
NSGA-II helps balance interference reduction and energy conservation across cloud-edge
clusters by optimising two primary objectives:

1. Objective 1 - Minimise Interference (f:

n
f, = min T 1(W (©), QoS (1))
i=1
where I(W, QoS) quantifies the interference experienced by SR i under its current

resource and QoS requirements.
2. Objective 2 - Maximise Green Energy Usage (fz):

m

f,= maxE1 Gy,

where Gj represents the availability of green energy (e.g., solar, wind) at datacenter
j,and Y is a binary variable indicating whether green energy is selected for

datacenter .

Each individual in the NSGA-II population represents a possible configuration of SR
placements and green energy usage. NSGA-Il evolves the population by iteratively
selecting, mutating, and recombining solutions based on non-domination sorting and
crowding distance to explore the Pareto front, where the set of optimal trade-offs
between minimising interference and maximising green energy usage is identified [15, 16].

Variables and Constraints

To formalise the NSGA-Il optimization problem, we introduce the following variables and
constraints:

° x; Binary decision variable, where X, = 1, if SR jis allocated to server j; otherwise,

x. =20
]

) Ej(t): Green energy consumed by server jat time ¢, which must align with its green

energy budget.
e D Deadline for serverless function k, dictating when execution must complete to

meet QoS standards.

Constraints:
1. Resource Capacity: The total resource demand of SRs on each server cannot
exceed its available capacity:
n
W X, < R], For all serversj
i=1

where Rj is the resource capacity of server .
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2. QoS Compliance: Each SR’s performance should meet its QoS requirements, given
by:
QoSi(t) = Qos threshold

For SR jto avoid service level agreement (SLA) penalties.
3. Green Energy Consumption Limit: The total energy consumption Ej(t) at each

server should not exceed available green energy when possible:
Ej(t) < G]_ Y,

2) Energy-Interference aware Placement of Serverless Runtimes

The scheduling of serverless runtimes involves dynamically allocating functions across
cloud-edge resources based on current energy availability and interference levels. For each
serverless runtime chain F, with computational load L and deadline D, the following

actions are taken:
A. Function Implementation Selection: Each function F, may have multiple

implementations, F F ...F, each with distinct trade-offs between
1 2 n

computational accuracy and green energy consumption. The scheduler prioritises
implementations with green energy footprints when energy constraints are tight,
using approximate computing techniques [17].

B. Computational OFfloading: When an edge node’s battery level is low or when
green energy sources are depleted, the scheduler can offload computation to cloud
nodes. Offloading reduces local energy consumption and ensures function
execution deadlines D, are met.

C. Algorithmic Steps for the Energy-Interference Optimization:
a. Input: Serverless Runtimes, F, deadlines D, green energy budget G,
interference predictions I.
b. Initialize: Generate an initial set of solutions for SR placements and green
energy usage.
c. Evaluate: For each solution, calculate interference f1 and green energy

usage fz.

d. Select and Evolve: Use non-dominated sorting and crowding distance to
retain Pareto-optimal solutions, applying crossover and mutation.

e. Output: Deploy the best solution that optimally reduces interference and
maximises green energy usage efficiency.

The plan is to evaluate and integrate the energy-interference optimization using COGNIT
testbed, benchmark datasets, and emulators (that is ongoing development).

By integrating Al/ML for interference prediction, NSGA-II for multi-objective optimization,
and energy-aware scheduling, this algorithm provides a robust solution to balance
performance with sustainability in the Cloud-Edge continuum. This approach not only
optimises green energy usage but also ensures service-level compliance, making it suitable
for various energy-sensitive and QoS-critical applications in serverless computing.
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b1.3 Evaluation strategies
- Prediction accuracy for interference within Edge Cluster when co-locating
execution of Serverless Runtimes.
- Estimate waiting time of function execution -in absence and in presence of
energy- interference optimization algorithm for Cloud-Edge resource management.

2.2.2 System Modelling and Simulations

a) Stable matching based modelling for energy-aware continuum systems

Continuum systems are dynamic, often massive in scale, and feature disparate
infrastructure providers and platforms; this greatly increases the complexity of developing
and managing applications. The Serverless paradigm shows the potential to greatly
simplify the process of building Continuum applications - however, current scheduling
mechanisms for Serverless Continuum platforms pay little attention to reducing the
energy consumption and improving the sustainability of function execution.

This is a significant omission, made worse as computing nodes within a Continuum may be
powered by renewable energy sources that are intermittent and unpredictable, making
low-powered and bottleneck nodes unavailable. There is great opportunity to design a
decentralised energy management scheme for scheduling Serverless functions that takes
advantage of the different layers of the Continuum, such as loT devices, edge
nodes,on-premises clusters closer to the data sources, or directly on large Cloud
infrastructures.

Through COGNIT, we formally model a green energy-aware Serverless workload
scheduling problem for the multi-provider Cloud-Edge Continuum, published in [2]. In this
work, we formally model the problem of decentralised energy management (utilising a
distributed controller) that considers the availability of green energy nodes and the QoS
requirements of Serverless functions as shown in Figure 2.14.
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Figure 2.14: Scenario for scheduling functions in energy-aware Continuum systems
a1. Mathematical modelling

In this model, the scheduling functionalities are distributed and thus every node within a
region is able to schedule the execution of incoming requests. This is especially crucial for
requests generated at the edge. The request comprises several microservices, and the
function executes tasks associated with each microservice. Each region possesses a local
controller, which follows the IBM MAPE-K [3] (Monitoring, Analysis, Planning, Execution,
and Knowledge) model. The MAPE-K serves as the reference control model for autonomic
and distributed self-adaptive systems. It is designed to accurately capture the dynamics of
the system and make effective decisions based on the available data and knowledge. Apart
from the local controllers (LCs), there exists a global controller (GC) which provides
information on all regions deployed in the continuum. Next, we formally model the stable
matching for Continuum systems.

Let T = {t|t€[0,T], (t + 1) — t = At seconds} be the set of consecutive time slots.
Let R = {j€[1, m]} be the set of regions.

o letD = {d{|ie[1, n], je[1, m]}be the set of n heterogeneous computing nodes
located across m different regions.
o letG = {g’i't, li€[1, n], j€[1, m], teT, g’l:tZO} be the energy input to node i.

o LetE = {e’l:t|ie[1, n], j€[1, m], teT, eft20} be the energy consumption of nodes.

o letS = {Si:t' li€[1,n], j€[1, m], teT, 625’1,;20} be the available amount of SoC (State of

Charge) on computing nodes.
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e Let Cap = {ie[l, n], jE[1, m], teT, capit € [0, y]} be the overall resource capacity of

nodes in MIPS (Million Instructions Per Second).
e Nodes can host functions if they satisfy the minimum energy threshold

s]itZC
The availability of a node is expressed as d’i'eD: yi’j =1, if sitz Celse yi’j:O whenever the
node is unavailable during the time slot t. Here, the value of SoC si’jdepends on the SoC at
the previous time period S]L:(t—l)' green energy input glz:t' and energy consumption e’i‘tat time

t. Forall di_'eD, the SoC Si(t—n is expressed as [4], [5], [6], [7]:
) P N J jo_
Vd.eD:s” = min(s, max(si(t_l) +9g,—€,0) (1)

The surplus green energy for regional node i at time slot ¢ is (si(t_l) + gjt - eit). Here, SoC
can range between 0 and 4. If the green energy of all nodes is depleted, the brown energy

consumption can be calculated as (e’i‘t — g’l_'t + S]i'(t—l))' The value of e]i't is determined based

on the functions assigned to d’i' att.

The overall energy consumption for all d’l,é D considers both direct usage and offloading

overhead scenarios [4], [5]. Direct usage is estimated based on the occupied resources of a

ijk ijk.

1
% (o +87")xq))
node for each microservice k, with the energy consumption given by =

Q
multiplied by the power consumption rate u. Offloading overhead energy consumption is

trans k,recv

!
calculated as Y (oek

!
ik ”m
X(K;} - ai] ) + 2 (oe
k=1 k=1

X Bi’j’k). The local and global
assignment of functions are denoted by cxi’j'k and Bi’j’k respectively. The overhead energy

k,trans

cost [4], [5] per microservice for transmitting and receiving are expressed by oe and

k,rec

oe “respectively. Finally, the total energy consumption is multiplied by the time slot
length At.

The set of microservices is expressed as B = {bk|ke[1, []}. The workload generated for a
collection of microservices at different time intervals across the regions is represented as

A = (0, lie[1, n], je[1, m], ke[1, 1], teT, X ‘€[0, " ‘max]}. The X ‘max denotes the maximum

possible workload that can enter into node i at region j. For execution, each workload
comprises a specific amount of processing in Million Instructions (Ml) expressed as

n= {nk, |ke[1, 1], o<’ € R}. The local controller determines the amount of workload

Gitk < Ajl:;k that can be processed locally in its region. The remaining part of workload

(A{'tk - ojtk) should be offloaded to the nearest region for processing.

i
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LetF = {f:j’k, lie[1,n], je[1,m], k€[1, 1], teT}be the set of functions is defined as, here

functions fi‘j’k perform workload execution for the b* microservice managed by compute
f f
ijk ,ijk

priority © at
ijk . . ijk ..
>
fd fq where ftype denotes the function ID to be invoked, fpn,m,ty represents the priority

i),k
type'

Ljk Ljk

1

node d in region j. Each function contains five attributes, i.e., fi’j'k= <f

level (high or low), ffi’k denotes arrival time, fzj'k represents the deadline, and ij'k denotes
the resource requirement. The required amount of resources for function deployment is

determined as Q = {qk|ke{1, B, qke[o, Q]}, where qk is restricted to the the node's
maximum capacity vy.

To support auto-scaling feature in Serverless, fi’j'k may contain multiple function replicas at
time t, restricted at R. Multiple replicas will ensure scalability and fault tolerance.
Following the replica-level modelling in [4] and [5], we set

¥ = (<”"|ie[1, n], je[1, m], ke[1, 1], teT, k" €[0, R]} represents the required number of

replicas per function. Based on the expected incoming workload, the number of replicas

. - ik, k
For b*on d'at t is estimated as K:"k = min(R, [“q—n]), which may receive a value between 0
k
to R. In the case where di is unavailable at t, then Ki’j'k becomes 0 (i.e., zero replica). To
model the replicas, the F is expanded to
F = {fi’j'k’x, |i€[1, n], je[1, m], k€[, 1], teT, x€[1, Ki'j'k]}, where x represents the o replica.

Based on the system modeling above, the primary objective of the approach is to minimise
the usage of brown energy by maximising the usage of green energy at t time interval.
Mathematically, the optimization objective is modeled as:

n m X .
miny Y 3 (max(ejit - git + Si(t—l)’ 0)) (2)
t i=1j=1
Subject to:
(2 3 o+ = (3 % yveer,vi'er  (3)
i=1j=1 i=1j=1
Wik b x, j k
k" =y xmin(R,[ - VteT,vd €D, Vb €B (4)
k

(3 (@ + B YxqN2( xw)veeT, vdeD ()
k=1

e ok
T S (6)
sov(r, dyzsov (!, dy= £ x 3 = 0 (7)
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For any time period t, Eq. (3) ensures that all function replicas are scheduled, while Eq.(4)
ensures that no scheduling of microservices on a node takes place if the node is
unavailable. Eq. (5) specifies that the total capacity required for assigned functions must
not surpass the maximum available capacity w of a node, either local or offloaded.

Additionally, the incorporation of variable yi’jprohibits assignment on unavailable nodes.
Eq. (6) ensures that the expected maximum time to finish function execution must not
violate the deadline. Here f:j’k is the waiting time for scheduling the function and f;J'k is

the processing time for function. Eq. (7) guarantees that functions assigned to any node
possess full authority and autonomy over their resources.

However, the Serverless workload scheduling problem is not solvable in polynomial time
due to its NP-hard nature. Therefore, we propose a novel stable matching based solution,
as it offers an advantage by providing an approximate solution to this highly complex
combinatorial optimization problem. The stable matching problem is a generalisation of
the stable marriage problem treated in [8].

a.2 Stable matching algorithm

At each region, the function invocation requests are submitted to the local controller. If
the region has not sufficient energy for function execution, then the global controller is
notified. The allocation of function requests to a node is performed by the local controller,
based on the features of the functions, energy and QoS availability of nodes in the region
provided through the monitoring component of MAPE-K model. Now we discuss the stable
matching algorithm, as shown in Figure 2.15:
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Algorithm 1: Matching based Function Scheduling

1 Input: Set of regions, set of nodes with respective
resource capacities, set of functions with their
required resource capacities,

2 Output: A stable matching g of functions and nodes
3 while t < T do

4 Phase 1: Initialization:

5 /* Regions */

6 | R« {Rlri7* e R ri =1}

7 /* Nodes */

8 | D+ {D|d] € D,i=null}

9 /* Resource Capacities */

10 Cap + {Cap|cap!, € cap, cap!, = ~}
11 /* State of Charge */

12 S « {S|s!, € S.s!, = current SoC}

13 /* Functions */

4 | F+— {F|f/7" € F. k= null}

15 Phase 2: Preference List Construction:

16 /* Creating a function’s preference list #/

17 for each funcrion ff"j"k c F do

18 I. Find the candidate node d*’ such that
(d¥ (SoC, QoS)) = (dl(SoC,QoS)):

19 2. Add d*’ into the preference list of node
£

20 end

21 /* Creating a node’s preference list */

22 for cach node d? € D do

23 l. Find the next function ff"j‘k such that

capll > f;f‘k, Vg € Q and f}7"* releases the
least amount of resources:

24 2. Add ff’j’k into the preference list of node d?.
25 end
26 Phase 3: Matching:
27 while Hf;’J’k e F'is not placed do
28 dg + Find the top rank in P(ff’j’k}:
29 if capl? > f;’tj’k, Vg € Q then
30 Assign f IR 1o df ;
31 caply = capll — fi* Vg e Q;
32 end
a3 else
34 Determine all flH7F to satisfy
f;,_’hk —g ftfi._j,k‘.
s Reject all fi»3% and mark fl"3% as
unengaged;
36 Update node df resources ds:
37 capl! = capl? + fét"j'k, Vg e Q
a8 Eliminate f{*7-* out of P(d});
39 Eliminate d! out of P(f]3°F);
40 end
41 end
42 |end

Figure 2.15: Matching based function scheduling in energy-aware Continuum systems
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We execute a stable matching algorithm on each local agent. In the /nitialization phase, the
local controller collects the current list of functions with their respective resource
demands and QoS, as well as the list of nodes along with their resource availability, latest
SoC values. In the Preference List Construction phase, we create function's preference list

and node's preference list. In the function's preference list, each function's replica fi’j’k‘l
prefers to be located in the node that has better SoC and satisfies its resource constraints
and desired QoS levels. Similarly, in the node's preference list, each node builds a
preference list over functions. This preference list is created according to the
consolidation policy, in which each node prioritises enhancing resource utilisation by
deploying more functions. Additionally, it implies that the node favours assignment over
unassignment. The Matching phase is inspired by the deferred acceptance algorithm [8].

The matching procedure commences from some unassigned functions flt] .The function

fi’j’kselects the highest rank node djl,' from its preference list P(fi’j'k) to propose. If node di

has enough resources to place function fi'j’k, it will accept the function fi’j'k. However, if

node di lacks the necessary resources, it rejects fi’ . Before rejecting f;’ , node d’i rejects

L il gk iq gk
allits matched functions ft’j’k such thatft’j’kls preferred overf (i.e, (ft”'k)>d(ft ).

Subsequently, function fi’j’k removes node d’i’ from its preference list P(f:j’k) and restarts
the proposing process. Consequently, the algorithm can eventually converge to a stable

assignment of functions and nodes within a finite number of steps.

This has served as one of the foundations for our work into energy-aware scheduling; we
plan to validate the scalability of our approach and work further going forward.

b) Energy-aware scheduling

The Carbon-aware Model Agent (CMA) is a key component of the Al-Enabled Orchestrator
within the COGNIT Serverless platform. Its primary role is to make intelligent scheduling
decisions based on the availability of low-carbon energy sources. In modern data centres,
the energy consumption required for computational tasks can have a significant
environmental impact. Traditionally, scheduling decisions prioritise performance and
resource availability. However, carbon-aware scheduling introduces a sustainability
dimension by considering the carbon intensity of the energy used during execution.

As mentioned at the beginning of this section, the Al-Enabled Orchestrator leverages
several machine learning models to predict workload demands and resource usage.
Additionally, it retrieves renewable energy availability forecasts from online sources, such
as electricitymaps. This enables the Al-Enabled Orchestrator to dynamically adapt to
fluctuating energy conditions. By scheduling functions and Serverless Runtimes to run
when and where renewable energy sources, such as wind and solar, are available, the
Al-Enabled Orchestrator can potentially reduce carbon emissions while still maintaining
optimal application performance. For example, non-latency-sensitive functions can be
executed in data centres powered by greener energy sources, aligning execution with
periods of peak renewable energy availability. Ideally, high energy-intensive functions
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(such as computationally or I/O-intensive Functions) should be executed in data centres or
edge servers with the lowest carbon intensity. This approach is particularly effective in the
Cloud-Edge Continuum, where diverse computing resources—ranging from edge devices
and on-premises infrastructure to cloud providers—can be orchestrated seamlessly,
ensuring both sustainability and performance goals are met.

b.1 Scheduling methods

Let R be a set of resources (functions or Serverless Runtimes) to be scheduled

immediately, where r represents a specific resource, and eAi denotes the predicted energy

usage for r.Let Rbea prediction of resources that will be scheduled in the future, e.g.
next 10 minutes. Assume C is a set of clusters available in the continuum, where ; denotes

a specific cluster and g; represents the momentary CO2 intensity (e.g CO2 intensity) for
that particular cluster, and g;j denote the predicted CO2 intensity for c, over the next 24

hours. Both g; and gAj can be obtained directly from the Internet given the location of the

cluster, assuming the cluster is not connected to a microgrid with its own power sources
(e.g., battery, solar). Another limitation is that the model does not consider the energy
efficiency of a particular cluster. We formulate the following scheduling strategies for
different scenarios:

b.1.1 Green-First Scheduling: For resources in R, which represent functions or Serverless
Runtimes that need to be scheduled immediately, we prioritise scheduling them in clusters
¢, with the lowest momentary CO2 intensity g, without considering the predicted energy

footprint e, of the workloads. This ensures that the current computational tasks are

executed in clusters with the least environmental impact in terms of CO2 emissions or
energy sourced from non-renewable sources. However, a potential drawback of this
approach is that it would saturate the ¢

luster with the lowest CO2 intensity first, potentially leading to resource contention or
performance bottlenecks. Once the lowest-intensity cluster is fully allocated, remaining
resources would be scheduled sequentially in clusters with progressively higher CO2
intensity, which may result in suboptimal performance as workloads might not be
distributed evenly across available clusters. Additionally, overloading the most
environmentally friendly clusters could limit future flexibility in handling incoming
workloads. Another drawback is that we may risk scheduling low-energy footprint
workloads on low CO2 intensity clusters.

b.1.2. Energy-Intensive Scheduling: High energy-intensive resources in R, such as
computationally or I/O intensive tasks, should be scheduled in clusters ¢, where the green

intensity gjis the lowest. This ensures that resource-heavy tasks are executed in the most

environmentally friendly locations, thus minimising their carbon impact. This strategy
avoids the issue of scheduling low-energy workloads in low CO2 intensity clusters, but it
only accounts For the current set of workloads R, without considering future workloads.
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Note that this method is equivalent to the Immediate Scheduling method if R contains
only a single workload.

b.1.3 Future-aware Energy-Intensive Scheduling: If future workloads in R are known,
more optimised scheduling decisions can be made. However, this requires the ability to
predict the execution time of specific workloads to be able to take into account the total

integrated energy usage. Calculating R and estimating execution time depends on
application-specific information, such as the execution history of a particular workFflow,
and cannot typically be determined without domain knowledge. That said, the predictions
do not need to be perfect; they only need to be reasonably accurate to optimise
scheduling, provided the estimates are not significantly off.

Additionally, the scheduler must plan how cluster capacity is used over time, considering
that different workloads have varying execution and completion times. For example, if a
cluster has 5 GPUs, the scheduler must account for how long each workload will allocate a
GPU and when it will complete, so that it can effectively schedule future workloads. This
requires understanding the temporal dynamics of resource usage to avoid idle time or
bottlenecks. The scheduler must carefully balance energy intensity, workload duration,
and available capacity, ensuring that workloads are allocated efficiently across clusters
while considering both current and future resource needs.

b.1.4 CO2-Optimised Scheduling: In this method, the scheduler integrates predictions for
both CO2 intensity and workload energy usage to calculate the total amount of CO2
emissions (in kilograms) released into the atmosphere for each scheduling option. By
combining these two factors, the scheduler can determine the carbon footprint associated
with running specific workloads on particular clusters over time. To do this, the scheduler

evaluates the predicted CO2 intensity gAj(t) for each cluster ¢ over the workload's predicted
execution time [to’ t].lt then integrates this information with the workload's predicted
energy usage rate ei(t), calculating the total amount of CO2 emitted during the workload’s
execution using the following formula:

t

Total CO2 emissions = | é},(t) eAi(t) dt  where

&

g;j(t) is the predicted CO2 intensity (e.g., CO2 kg per kwWh) for cluster ¢, at timet,

é\i(t) is the predicted energy usage of workload r.at time t,
[t0 t ]is the time window over which the workload is executed.

The integration yields the total CO2 emissions for that workload over its entire execution
time. The scheduler computes this value for each potential scheduling option across
different clusters and time windows. Once the total CO2 emissions are calculated for each
cluster and time window, the scheduler can select the option that minimises the overall
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carbon footprint. This ensures that energy-intensive workloads are scheduled in the most
environmentally friendly clusters, during times when CO2 intensity is lowest.

This method requires:

1. Accurate CO2 intensity forecasting: Access to detailed predictions of CO2
intensity gj(t) for each cluster over time.

2. Workload Energy usage predictions: Reliable estimates of the energy
consumption e () for each workload over its execution time.

b.1.5 Deferred Scheduling: This method introduces flexibility by deferring the execution
of non-urgent workloads to a later time when the environmental impact is expected to be
lower. Instead of immediately scheduling tasks based on current green intensity or
workload characteristics, the scheduler strategically delays tasks to align with periods of
reduced CO2 intensity. This approach is particularly effective for energy-intensive tasks
(e.g., Al training batch jobs) that are not time-sensitive, allowing them to benefit from
waiting for more favourable conditions in terms of renewable energy availability.

To prevent indefinite deferral, users must define a deadline by which each workload or
function must be completed. The scheduler must balance the benefits of deferring a
workload to reduce carbon emissions with the need to meet its deadline. For instance, a
highly energy-intensive workload may be scheduled to run in the near future if it aligns
with an expected drop in CO2 intensity, but it could be delayed by another deferred, less
energy-intensive workload with an urgent deadline that cannot be pushed further. As new
workloads enter the system or as conditions change, the scheduler must continuously
re-plan deferred tasks, adjusting its strategy in real time to avoid bottlenecks and
maximise environmental benefits while ensuring deadlines are respected.

b.1.6 Waste Heat reuse Scheduling: This method leverages the waste heat generated by
data centres and computing clusters to maximise energy efficiency. Rather than treating
the heat produced during computational tasks as a byproduct to be discarded, the
scheduler optimises the placement of workloads in facilities that can capture and reuse
this waste heat for purposes such as heating nearby buildings.

In this approach, the scheduler prioritises energy-intensive workloads (e.g., Al model
training) for data centres equipped with waste heat recovery systems. By directing these
high-computation tasks to such facilities, the energy consumed can be repurposed,
significantly reducing the overall environmental impact of the workload.

Energy-intensive tasks are ideal candidates for waste heat reuse, as they produce larger
amounts of heat that can be captured and repurposed. The scheduler must be able to
identify which data centres or clusters are equipped with waste heat recovery systems,
prioritising these facilities for workloads that generate significant heat.

This method can be combined with others, such as CO2-Optimised Workload Planning or
Deferred Scheduling, to both reuse heat and reduce CO2 emissions. By capturing and
reusing the waste heat from computational tasks, this method improves overall energy
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efficiency, reduces the need for additional heating or energy generation, and contributes
to a more sustainable computing infrastructure.

b.2 Methodology

To develop and validate the Carbon-Aware Scheduler (CMA), a controlled environment is
essential for designing and testing a range of scheduling algorithms. A simulator provides
an ideal platform to model and explore different approaches, enabling in-depth evaluation
of algorithm performance under various conditions and CO2 intensity scenarios.
Generating realistic workloads is crucial to ensure that the scheduler’s performance is
accurately assessed. This requires creating workloads that reflect typical usage patterns,
variability, and resource demands, allowing the CMA to be tested in conditions that closely
mirror real-world deployments.

The methodology involves the following key steps:

e Simulator Development: Develop asimulator that can model different scheduling
environments, enabling controlled testing of various scheduling strategies and
their impact on CO2 emissions and energy efficiency.

e Carbon-Aware Scheduler algorithms: Develop and explore different scheduling
algorithms based on historical CO2 intensity and simulated workload energy usage
patterns. This approach enables initial testing and refinement of the CMA’s
decision-making algorithm.

e Integration with Al-Enabled Orchestrator: Integrate the CMA into the Al-Enabled
Orchestrator to facilitate real-time, intelligent scheduling across the Cloud-Edge
Continuum.

e Validation in COGNIT Testbed: Test and validate the CMA using the COGNIT
testbed and the use cases to verify its performance in a live environment. This step
involves assessing the scheduler’s ability to optimise for reduced CO2 emissions
while maintaining workload performance and resource efficiency.

b.3 Datasets

To enable accurate simulation and testing of scheduling algorithms, we utilised diverse
datasets that capture both workload energy usage and CO2 intensity. These datasets
provide critical insights for developing carbon-aware scheduling methods.

b.3.1 Workload dataset

To generate realistic datasets in the simulator, we utilised the MIT Supercloud Dataset
[13]. Below in Figure 2.16 there are three examples of workload traces from this dataset,
with the Y-axis representing power consumption in watts (W), illustrating energy usage
patterns of different workloads over time. The full dataset comprises 109,747 workload
traces, totaling 2.3 TB of data, providing a comprehensive foundation for accurate
simulation and evaluation of scheduling algorithms. Note that power utilisation may vary
significantly over time, meaning that a scheduler must account for these Fluctuations to
optimise energy efficiency and minimise CO2 emissions effectively.
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Figure 2.16: Example workload traces from the MIT Supercloud Dataset [13]
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b.3.2 CO2 Intensity

The CO2 intensity dataset was generated by downloading data from the
ElectricityMap.org website, capturing CO2 intensity values for 73 zones across the
European Union over a 5-month period. Figure 2.17 shows examples of CO2 intensity data
for Poland and Sweden, highlighting a substantial difference in carbon intensity between
different regions.
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Figure 2.17: Example of how CO2 intensity data can vary between electricity regions:
Poland (above) and Sweden (below)
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b.4 Simulator

A discrete-event simulator was developed to replay workloads from the MIT Supercloud
dataset. To effectively simulate these workloads and energy conditions, the following
factors must be considered:

1.

Cluster Generation: Create edge and cloud clusters across various electricity
regions in Europe, each with unique resource configurations (memory, CPU etc.).
This setup allows the simulator to model realistic energy variations across clusters.
Pre-Defined Replay Log: Generate a pre-determined replay log containing a
sequence of workflows to be executed. This enables consistent replay of workflow
sequences, enabling direct comparisons of different scheduling algorithms.
WorkFlow Trigger Frequency: Define the rate at which workflows are triggered
from the replay log, allowing control over cluster utilisation levels across different
load scenarios. One approach is to randomly sample a wait time from a specified
distribution (e.g. normal or beta-distributions), creating variable load patterns.
Alternatively, a target utilisation rate can be set, with the wait time calculated to
achieve this specific rate.

Modular Scheduler Integration: Design the simulator to support modular
integration of different scheduler algorithms, enabling straightforward
experimentation and testing.

Observable Environment for the Scheduler: Establish an environment that the
scheduler can monitor, providing real-time data on cluster utilisation and current
CO2 intensities for different regions. This setup enables the scheduler to make
informed, adaptive decisions based on up-to-date conditions. Additionally, the
simulator should track cumulative CO2 emissions released into the atmosphere,
enabling accurate assessment of the environmental impact of different algorithms.

Figure 2.18 shows the clusters currently used in the simulator experiments:

Rey@

Vallettag Nicosiag

Figure 2.18: Cluster locations currently supported in the Simulator.
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Below there is an example of a cumulative emissions time series generated by the
simulator. As a baseline scenario, clusters are selected randomly. An effective CO2-aware
scheduling algorithm should obviously aim to outperform this baseline and significantly
reduce cumulative CO2 emissions. Work is currently ongoing to implement and evaluate
the different scheduling strategies.
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Figure 2.19: Example of cumulative emissions time-series
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3. Conclusions and future work

This development cycle focused on advancing workload prediction models and evaluated
(Since April 2024) to improve their predictive accuracy and operational efficiency within
Cloud-Edge environments. This report highlights the comparison between four core
models—LSTM, FFNN, TCN, and GRU—that were reported and integrated into the model
repository of the Al-Enabled Orchestrator component of the COGNIT framework. Each
model was designed to handle different aspects of workload characterization and
prediction, contributing to a more dynamic and efficient orchestration process. LSTM, in
particular, was able to capture long-term dependencies in time-series data, leading to its
superior performance in predicting metrics like memory usage and disk writes. Meanwhile,
the FFNN model, despite being simpler, demonstrated strong performance in CPU usage
prediction, indicating its effectiveness in scenarios where sequential dependencies are less
critical.

Future development will focus on further refining these models by integrating more
advanced architectures, such as attention-based mechanisms and transformers, to handle
more complex and dynamic workload patterns. In addition, the next steps will involve
expanding the datasets to include additional metrics such as energy consumption and
latency, which are becoming increasingly important in optimising resources in the
Cloud-Edge continuum. By leveraging real-time adaptive learning, future iterations of
these models could dynamically adjust to changes in workload behaviour, enhancing the
Al-Enabled Orchestrator’s ability to optimise resource utilisation and proactively manage
cloud-edge resources. Moreover, the currently developed algorithm For multiobjective
resource optimization, i.e., energy-interference aware optimal placement of serverless
runtimes, will be implemented, validated, and integrated with the COGNIT Testbed.

To improve the energy-efficiency and sustainability of COGNIT, we formally model a green
energy-aware workload scheduling problem for the Cloud-Edge continuum and design a
stable matching based approach that considers the availability of green energy nodes and
the QoS requirements. These efforts will contribute significantly to achieving more
efficient, energy-aware cloud-edge infrastructures, improving overall performance, and
enabling more effective, intelligent orchestration strategies within the COGNIT
framework.

Finally, in regard to carbon-aware scheduling, our goal is to integrate workload prediction
models mentioned in Section 2 (e.g., the LSTM model) to forecast workload utilisation.
Using these predictions, we will develop a model to convert utilisation into energy
consumption (W), which can then be applied within the simulator described in Subsection
2.2.2. Additional work is also needed to finalise the carbon-aware scheduler, including its
integration with the Al-Enabled Orchestrator.
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