

A Cognitive Serverless Framework for the Cloud-Edge Continuum

D3.4 COGNIT FaaS Model -
Scientific Report - d

Version 1.0

30 April 2025

Abstract

COGNIT is an AI-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
Continuum that enables the seamless, transparent, and trustworthy integration of data
processing resources from public providers and on-premises data centers in the
Cloud-Edge Continuum. The main goal of this project is the automatic and intelligent
adaptation of those resources to optimise where and how data is processed according to
application requirements, changes in application demands and behaviour, and the
operation of the infrastructure in terms of the main environmental sustainability metrics.
This document describes the research and development carried out in WP3 “Distributed
FaaS Model for Edge Application Development” during the Fourth Research & Innovation
Cycle (M22-M27), providing details on the status of a number of key components of the
COGNIT Framework (i.e. Device Client, COGNIT Frontend, and Edge Cluster) as well as
reporting the work related to supporting the Secure and Trusted Execution of Computing
Environments.

 Copyright © 2023 SovereignEdge.Cognit. All rights reserved.

This project is funded by the European Union’s Horizon Europe research and innovation
programme under Grant Agreement 101092711 – SovereignEdge.Cognit

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://cognit.sovereignedge.eu/

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Deliverable Metadata

Project Title: A Cognitive Serverless Framework for the Cloud-Edge Continuum
Project Acronym: SovereignEdge.Cognit
Call: HORIZON-CL4-2022-DATA-01-02
Grant Agreement: 101092711
WP number and Title: WP3. Distributed FaaS Model for Edge Application Development
Nature: R: Report
Dissemination Level: PU: Public
Version: 1.0
Contractual Date of Delivery: 31/03/2025
Actual Date of Delivery: 30/04/2025
Lead Author: Idoia de la Iglesia (Ikerlan)
Authors: Monowar Bhuyan (UMU), Malik Bouhou (CETIC), Aritz Brosa (Ikerlan), Cristina

Cruces (Ikerlan), Martxel Lasa(Ikerlan), Jean Lazarou (CETIC), Fátima Fernández
(Ikerlan), Aitor Garciandia (Ikerlan), Torsten Hallmann (SUSE), , Philippe Massonet
(CETIC), Nikolaos Matskanis (CETIC), Deins Darquennes (CETIC), Mikel Irazola
(Ikerlan), Álvaro Puente (Ikerlan), Thomas Ohlson Timoudas (RISE), Paul Townend
(UMU), Iván Valdés (Ikerlan), Alejandro Mosteiro (OpenNebula), Mikalai Kutouski
(OpenNebula), Michal Opala (OpenNebula), Marco Mancini (OpenNebula).

Status:​ Submitted

Document History

Version Issue Date Status 1 Content and changes
0.1 22/04/2025 Draft Initial Draft
0.2 24/04/2025 Peer-Reviewed Reviewed Draft
1.0 30/04/2025 Submitted Final Version

Peer Review History

Version Peer Review Date Reviewed By
0.2 23/04/2025 Yashwant Singh Patel (UMU)
0.2 24/04/2025 Antonio Álvarez (OpenNebula)

Summary of Changes from Previous Versions

First Version of Deliverable D3.4

1 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

Version 1.0​ 30 April 2025 ​ Page 2 of 42

https://cordis.europa.eu/project/id/101092711

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Executive Summary

This is the fourth “COGNIT FaaS Model - Scientific Report” that has been produced in WP3
“Distributed FaaS Model for Edge Application Development”. It describes in detail the
progress of the software requirements stated in deliverable D2.4 that have been active
during the Fourth Research & Innovation Cycle (M22-M27) in connection with these main
components of the COGNIT Framework:

Device Client

●​ SR1.1 Interface with COGNIT Frontend
Implementation of the communication of the Device Client with the COGNIT
Frontend.

●​ SR1.2 Interface with Edge Cluster
Implementation of the communication of Device Client with the Edge Cluster.

●​ SR1.3 Programming languages
Support for different programming languages.

●​ SR1.4 Low memory footprint for constrained devices.
●​ SR1.5 Security

Device Runtime must be secured.

●​ SR1.6 Collecting Latency Measurements
Latency measurements against Edge Clusters should be acquired by the Device

Client.

COGNIT Frontend

●​ SR2.1 COGNIT Frontend
Provides an entry point for devices to communicate with the COGNIT
Framework for offloading the execution of functions and uploading global
data.

Edge Cluster

●​ SR3.1 Edge Cluster Frontend
The Edge Cluster must provide an interface (Edge Cluster Frontend) for the
Device Client to offload the execution of functions and to upload local data
that is needed to execute the function.

●​ SR3.2 Secure and trusted Serverless Runtimes
The Serverless Runtime is the minimal execution unit for the execution of
functions offloaded by Device Clients.

Secure and Trusted Execution of Computing Environments

●​ SR6.1 Advanced Access Control
Implement policy-based access control to support security policies on

Version 1.0​ 30 April 2025 ​ Page 3 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

geographic zones that define a security level for specific areas.

●​ SR6.2 Confidential Computing
Enable privacy protection for the FaaS workloads at the hardware level using
Confidential Computing (CC) techniques.

This deliverable has been released at the end of the Fourth Research & Innovation Cycle
(M27), and in M33, at the end of the Fifth Research and Innovation Cycle D3.5 will be
released and, being the final version, will be standalone.

Version 1.0​ 30 April 2025 ​ Page 4 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Table of Contents

Abbreviations and Acronyms​ 6
1. Device Client​ 7

1.1. [SR1.1] Interface with COGNIT Frontend​ 12
1.2 [SR1.2] Interface with Edge Cluster​ 16
1.3 [SR1.3] Programming languages​ 18
1.4 [SR1.4] Low memory footprint​ 28
1.5 [SR1.5] Security​ 28
1.6 [SR1.6] Collecting Latency Measurements​ 29

2. Edge Cluster​ 34
2.1 [SR3.1] Edge Cluster Frontend​ 34
2.2 [SR3.2] Secure and Trusted Serverless Runtimes​ 35

3. Secure and Trusted Execution of Computing Environments​ 37
3.1 Threat Model​ 38
3.2 [SR6.1] Advanced Access Control​ 42
3.3 [SR6.2] Confidential Computing Requirement​ 42

Version 1.0​ 30 April 2025 ​ Page 5 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Abbreviations and Acronyms

AI​ ​ ​ Artificial Intelligence

API​ ​ ​ Application Programming Interface

CFE​ ​ ​ COGNIT Frontend Engine

CC​ ​ ​ Confidential Computing

DaaS​ ​ ​ Data as a Service

ECFE​​ ​ Edge Cluster Frontend Engine

FaaS​ ​ ​ Function as a Service

HTTP​​ ​ Hypertext Transfer Protocol

IP​ ​ ​ Internet Protocol

JSON​​ ​ Javascript Object Notation

MITM​ ​ Man In the Middle attack

MTM​ ​ Microsoft Threat Modeling

REST​ ​ ​ Representational State Transfer

SLA​ ​ ​ Service Level Agreement

SR​ ​ ​ Serverless Runtime (with no number)

SRx​ ​ ​ Software Requirement (with a number associated, e.g.: SR1.1)

SSL​ ​ ​ Secure Sockets Layer

TLS​ ​ ​ Transport Layer Security

VM​ ​ ​ Virtual Machine

VPN​ ​ ​ Virtual Private Network

1. Device Client

The Device Client uses the COGNIT library, which exposes the DeviceRuntime class. This
release improves upon previously developed methods from this class and enhances the
system’s internal operation. In addition, new methods have been included to extend the
functionality of the DeviceRuntime. As of this release, the DeviceRuntime class provides
five methods through which the client device can interact with the COGNIT Framework.

The first two methods are the init() and stop() functions. In previous versions,
init() just initialised the communication with COGNIT by means of authentication and
exchange of requirements. Now, init() launches a thread where the Device Runtime
State Machine, developed in the previous version, runs by its own means. In other words,
once the Device Runtime State Machine is launched, it will not only authenticate and
exchange requirements, it will be prepared to handle every type of situation that the
communication will require. By contrast, the stop() method shutdowns the Device

Version 1.0​ 30 April 2025 ​ Page 6 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Runtime State Machine, meaning that the user will not be able to offload functions once
this method is called.

The call() and call_async() methods from the DeviceRuntime class can be leveraged
by the user to offload functions into COGNIT by passing the function and its arguments.
The call() function blocks the calling thread until it receives the results from COGNIT
whereas call_async() function will call the provided callback once the result arrives.
Both functions enqueue function information into a buffer called the call_queue. The
Device Runtime State Machine, responsible for managing communication between the
Device Runtime and the Cognit framework, runs on a separate thread from the one issuing
offloading commands launched or stopped by the init() and stop() functions,
respectively. Once the Device Runtime State Machine reaches the READY state, it
processes the enqueued functions sequentially, offloading them to the Cognit Framework.

Although the call_async() function allows users to initiate non-blocking executions, the
Device Runtime State Machine itself processes functions synchronously, meaning it will
not execute a new function until it receives the result from the previous one. This ensures
orderly execution while maintaining an asynchronous interface for the user. In order to
provide a full asynchronous function offloading service, it will be needed between the
Device Client and COGNIT Framework to have a mechanism to poll the status of all the
different functions offloaded, as well as an endpoint to offload functions without waiting
for the result. As of now, the Device Client is only able to reach the endpoint where the
functions are executed following the queue order.

Finally, the update_requirements() function will notify the Device Runtime State
Machine that the application requirements that are used for the communication between
the Device Runtime and COGNIT have changed. This will trigger some actions in the Device
Runtime State Machine to readapt the communication between the Device Client and
COGNIT.

It is also worth noting that the Device Runtime State Machine is also prepared to send
periodically to the COGNIT Framework the latency between the Device Runtime and Edge
Cluster Frontend. However, it is not fully integrated in the system as it needs to be
adapted to be fully compliant with Edge Cluster Frontend’s needs to handle properly these
metrics, that’s why the concerned Software Requirement (SR1.6) is in progress and not
completed, this will be tackled in the next development cycle.

The Application Programming Interface (API) definition for the DeviceRuntime can be
summarized in the following methods:

Version 1.0​ 30 April 2025 ​ Page 7 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Description Method Parameters Return Type

Initializes the state
machine that
handles the
communication
with the COGNIT
Framework with
specific
requirements.

init() A dict python
object containing
the application
requirements.

bool

Stops the state
machine that
handles the
communication
with the COGNIT
Framework.

stop() None bool

Updates the
current
requirements that
are used during
the
communication
with COGNIT
Framework.

update_requirements() A dict python
object containing
the new
application
requirements.

bool

Offloads a
function blocking
the calling thread
until the results
are given by the
COGNIT
framework.

call() Function to be
offloaded
(Callable type)

Parameters to be
used in the
function. (Tuple
type, optional)

ExecResponse
object
containing the
result of the
execution or
the error in case
it was not
executed
correctly.

Version 1.0​ 30 April 2025 ​ Page 8 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Offloads a
function without
blocking the
calling thread.

The callback will
be called once the
results are given
by the COGNIT
framework

call_async() Function to be
offloaded
(Callable type)

Callback to be
called when the
function
execution finishes
(Callable type
with the
structure)

Parameters to be
used in the
function. (Tuple
type, optional)

bool

Table 1.1. API definition of the DeviceRuntime class

System architecture

In this new version, the Device Runtime State Machine operates in a separate thread. As
illustrated in Figure 1.1, unlike the previous version, where interactions occurred directly
with the Device Runtime State Machine, this version introduces a handler that manages all
transitions and events that influence the behaviour of the state machine.

The primary events managed by the handler are:

●​ Initialization of the State Machine: Upon initialization, a thread is launched where
the state machine is continuously evaluated to determine the appropriate state
transition.

●​ Shutdown of the State Machine: The loop executed by the thread is terminated by
setting a flag that controls the running state. This flag allows the handler to exit or
re-enter the loop.

●​ Changing Requirements: The handler can receive commands to modify the state
machine's requirements. When this occurs, the handler updates a flag that
indicates whether there are pending requirements to be processed. Once this
parameter changes, the Device Runtime State Machine transitions to the state
responsible for handling the requirement modification.

When calling the call() and call_async() functions, the Device Runtime library does
not interact with the Device Runtime State Machine handler. These functions convert the
information provided by the user into a Call Object and enqueue it to the call_queue
buffer. The Device Runtime State Machine, once in the ready state (which requires prior

Version 1.0​ 30 April 2025 ​ Page 9 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

initialization), retrieves these Call Objects and uses them to offload the functions to
COGNIT.

​
Figure 1.1. Internal system description

Components of the Device Runtime State Machine

The Device Runtime State Machine has not changed from previous versions. It is composed
of a set of four states. Each of these states represents a particular situation in the
communication process between the Device Client and the COGNIT framework. The
different states work as follows:

●​ INIT. This is the initial state of the communication process, where the user has not
yet been authorised on the Frontend.

●​ SEND_INIT_REQUEST. Once the user is authorised, they are permitted to upload
offloading requirements for their functions. This state handles that process.

●​ GET_ECF_ADDRESS. After successfully uploading the requirements, the system
transitions to this state, where it waits for and requests the address of the Edge
Cluster (ECF) that will handle the user's requests.

●​ READY. If all prior steps are completed, the state machine enters the READY state,
indicating it is prepared to offload the user's client functions to the most suitable
virtual machine based on the requirements.

Although the states and transitions between them have not changed, the way the READY
state offloads the functions changes as the way of receiving the function changes.

The transition from one state to another does not follow a linear path, and it always
depends on the particular situation of the communication. These situations are tracked by
the state machine using variables that are checked before a transition is produced. In this

Version 1.0​ 30 April 2025 ​ Page 10 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

manner, the path to the states will be different depending on the value of these variables.
Some of the different situations that are tracked are:

●​ A successful or not authentication from the user.
●​ The correct uploading of the requirements to the COGNIT Framework.
●​ A continuous track of the state of the communication session with the Frontend

clients.
●​ The obtention of a correct address to the Edge Cluster attendant.

The only difference between previous versions is that on top of the state machine, there is
now a state machine handler that oversees the launch and management of the transitions
in the Device Runtime State Machine.

Data Model of the Device Runtime State Machine

When calling the call() and call_async() functions, the Device Runtime library does
not interact with the Device Runtime State Machine handler. These functions convert the
information provided by the user into a Call Object and enqueue it to the call_queue
buffer. The Device Runtime State Machine, once in the READY state (which requires prior
initialization), retrieves these Call Objects and uses them to offload the functions to
COGNIT.

Three different data structures are used in communication with the Device Runtime State
Machine:

1.​ ExecResponse Model: Used to communicate the function execution result from
COGNIT. It is the data structure retrieved when calling call() via the function
result and call_async() via the argument of the callback function.

2.​ Scheduling Model: This structure is used to share requirements with the Device
Runtime State Machine when the update_requirements() or init() functions are
called.

3.​ Call Model: The newest model incorporated in this communication. A Call object
of this model is created every time call() or call_async() is called. By passing
this function information to the queue, it is then retrieved by the Device Runtime
State Machine to offload and execute functions.

An overview of these three models is shown as follows:

Version 1.0​ 30 April 2025 ​ Page 11 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Attribute Description Fields Type

ExecResponse Response of a
generic execution,
with its return code,
result and error if
applicable.

ret_code: ExecReturnCode

res: str (Optional)

err: str (Optional)

Inherits from
pydantic ’s 2

BaseModel

Scheduling String describing the
policy applied to
scheduling. e.g.:
“energy, latency” will
optimise the
placement according
to those two criteria.

POLICY: str

REQUIREMENTS: str

Inherited
from
pydantic’s
BaseModel

Call Internal object model
expected by
call_queue to
offload functions.

function: Callable

fc_lang: FunctionLanguage

callback: Callable (optional)

mode: ExecutionMode

params: List[Any]

Inherited
from
pydantic’s
BaseModel

Table 1.2. Data Model defining the Device Client’s interaction with the Device Runtime State
Machine.

1.1. [SR1.1] Interface with COGNIT Frontend

Description

The COGNIT Frontend Client is an integral component of the Device Runtime, facilitating
interaction with the COGNIT Frontend Engine.

This client provides several key functionalities. Firstly, it supports the uploading, updating,
and deletion of user-defined application requirements. Secondly, it enables the uploading
of functions. Lastly, it facilitates the retrieval of the most optimal COGNIT Edge Cluster
Frontend Engine (ECFE) endpoint for task offloading.

The COGNIT Frontend Client employs an internal flag has_connection to indicate the
current connection status, allowing other modules within the Device Runtime to check this
flag. Additionally, it maintains an internal variable that maps uploaded functions to the IDs

2 https://docs.pydantic.dev/latest/

Version 1.0​ 30 April 2025 ​ Page 12 of 42

https://docs.pydantic.dev/latest/

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

assigned by COGNIT, thereby minimising the processing overhead associated with
re-uploading existing functions.

Data model

The data model of the interaction with the COGNIT Frontend Engine defines all the fields
expected by the COGNIT Frontend Engine for requests and responses.

The UploadFunctionDaaS data model follows the structure defined in ExecSyncParams
of the previous version.

Attribute Description Fields Type

Scheduling Object
containing the
information of
the application
requirements.

FLAVOUR: str

MAX_LATENCY: int (optional)

MAX_FUNCTION_EXECUTION
_TIME: float (optional)

MIN_ENERGY_RENEWABLE_U
SAGE: int (optional)

GEOLOCATION: str (required if
MAX_LATENCY is defined,
optional otherwise)

Inherited
from
pydantic’s
BaseModel

FunctionLanguage String defining
the language
of the
offloaded
function.

PY = “PY”

C = “C”

Enum

UploadFunctionDaaS Object
containing the
information
(language,
function, and
hash) about the
function to be
uploaded.

LANG: FunctionLanguage

FC: str

FC_HASH: sr

Inherited
from
pydantic’s
BaseModel

Version 1.0​ 30 April 2025 ​ Page 13 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

EdgeClusterFrontend

Response

Object
containing the
information
about the
optimal Edge
Cluster
obtained from
the COGNIT
Frontend
Engine.

ID: int

NAME: str

HOSTS: list[int]

DATASTORES: list[int]

VNETS: list[int]

TEMPLATE: dict

Inherited
from
pydantic’s
BaseModel

Table 1.3. Data model of the COGNIT Frontend Client component.

API & Interfaces

The COGNIT Frontend Client is composed of several private methods, as depicted in Table
1.4, which are abstracted from the user and are used to interact with the COGNIT Frontend
Engine.

Description Method Parameters Return Type

Used to delete
the application
requirements
using the id
stored as a class
variable.

_app_req_delete None Bool indicating
if the app
requirement
has been
deleted.

Get the
application
requirements
using the id
stored as a class
variable.

_app_req_read None Scheduling

type object
containing the
information
about the
application
requirements.

Update the
application
requirements
using the id
stored as a class
variable.

_app_req_update new_reqs: Scheduling Bool indicating
if the app
requirement
has been
updated.

Version 1.0​ 30 April 2025 ​ Page 14 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

 Authenticates
the device with
the ECFE to get a
valid biscuit
token.

Uploads the initial
application
requirements to
the DaaS
gateway.

_authenticate None biscuit_token

: str

Check if
GEOLOCATION
field has a value
for the cases that
MAX_LATENCY is
defined

_check_geolocation

_valid

reqs: Scheduling is_valid: bool

Get the endpoint
of the optimal
Edge Cluster.

_get_edge_cluster_

address

None String
containing the
endpoint.

Serialize and
upload the
function. Add the
uploaded
function id to the
class variable
map.

upload_funtion_to_

daas

func: Callable Int

Perform the
upload of the
serialised
function.

_upload_fc fc:
UploadFunctionDaas

func_id: int

Version 1.0​ 30 April 2025 ​ Page 15 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Getter for the
has_connection
flag.

get_has_connection None Bool indicating
if the CFE Client
has a
connection with
the COGNIT
Frontend.

Perform the
authentication
and upload the
initial app
requirements

init initial_reqs:
Scheduling

Bool indicating
the status of
the
initialization.

Setter for
has_connection

flag.

set_has_connection new_value: bool None

Table 1.4. API definition of the Cognit Frontend Client component.

1.2 [SR1.2] Interface with Edge Cluster

Description

The Edge Cluster Client is the component from the Device Runtime that manages the
entire communication process with the Edge Cluster. The Edge Cluster serves as an
intermediary between the Device Client and the Serverless Runtimes (via the Edge
Cluster) that run across the Cloud-Edge Continuum. Therefore, to interact with these
Serverless Runtimes, the Edge Cluster Client must be capable of executing certain
directives from the Edge Cluster, which will, in turn, affect the Serverless Runtimes.

As well as in the previous deliverable, there is only one directive that interacts with the
Edge Cluster. This directive can be accessed through the REST API incorporated into the
Edge Cluster if a correct authentication was properly done in the COGNIT Frontend. This
directive allows the synchronous retrieval of the result of a function execution, previously
uploaded, by supplying the arguments and the identification of the corresponding
function.

This endpoint is used not only in the call() function but also in the call_async()
function. This is the reason why call_async() functions preserve the order of execution
and only provide an asynchronous interface for the user. Future works can focus on a
different endpoint for this type of execution.

Architecture & components

Version 1.0​ 30 April 2025 ​ Page 16 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

As well as it occurs in the COGNIT Frontend, the Edge Cluster Frontend employs an
internal flag has_connection to indicate the current connection status, allowing other
modules within the Device Runtime to check this flag.

The following table summarize the methods developed for the Edge Cluster Frontend
Client:

Description Method Parameters Return Type

Executes a function with
func_id in the COGNIT
Framework

execute_function() func_id: int

app_req_id: int

exec_mode:
ExecutionMode

callback: Callable

params_tuple:
tuple

timeout: int
(optional)

ExecResponse

Sends location and
latency metrics to the
Edge Cluster Frontend

send_metrics() location: str

latency: int

None

Setter for
has_connection flag.

set_has_connection new_value: bool None

Table 1.5. API definition of the Edge Cluster Client component.

Data Model

Table 1.6 describes the data model followed by the Edge Cluster Client in order to achieve
a successful communication with the Edge Cluster. In other words, the following attributes
define all the fields expected by the Edge Cluster:

Version 1.0​ 30 April 2025 ​ Page 17 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Attribute Description Fields Type

FunctionLanguage String describing the
language of the
offloaded function.

PY = “PY”

C = “C”

Enum

ExecutionMode String describing how the
function is going to be
executed.

SYNC = “sync”

ASYNC = “async”

Enum

ExecReturnCode String describing if the
execution of the function
went successfully or not.

SUCCESS = 0

ERROR = -1

Enum

ExecResponse Information obtained
after a synchronous
execution of an offloaded
function.

ret_code:
ExecReturnCode

res: str

err: str

Inherited from
pydantic’s
BaseModel

Table 1.6. Data Model followed by the Edge Cluster Client

1.3 [SR1.3] Programming languages

 Description

In this development cycle a new version of the Device Runtime for the C language has
been developed implementing the new COGNIT architecture. The main difference with the
Python version is the serialization of the data. As the C Device Runtime must be able to
offload Python functions, a serialization method which enables the correct understanding
between the C client and the Python Serverless Runtime had to be implemented. The
solution implemented for this requirement has been Protobuf . 3

Architecture & components

Protobuf

Protocol Buffers (Protobuf) is a data serialization framework developed by Google that
offers a mechanism to serialize structured data. It is language-neutral and

3 https://protobuf.dev/

Version 1.0​ 30 April 2025 ​ Page 18 of 42

https://protobuf.dev/

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

platform-neutral, making it useful for communications between heterogeneous services.
Figure 1.2 summarizes how Protobuf works.

Figure 1.2. Protobuf functioning

The necessary data structures (“messages”) are defined in a .proto file, specifying the
fields the messages will contain with an ID, types, and labels that indicate whether a field
is optional, required (in earlier versions), or repeated.

Once the .proto file is defined, the Protocol Buffers compiler is used to generate code in
the required target programming language. This generated code includes classes and
methods for serializing the data to a binary format and deserializing it back into
in-memory objects.

In the context of this project we decided to use a specific implementation of Protobuf,
which is nanopb is a C implementation of Protocol Buffers specifically designed for 4

resource-constrained devices. Some of its key advantages for resource constrained
environments are the optimized memory usage with lightweight structures and the
flexibility to use dynamic or static memory.

Classes and Methods

The C Device Runtime offers the following classes and methods to manage the COGNIT
library and interact with the COGNIT Platform.

4 https://github.com/nanopb/nanopb

Version 1.0​ 30 April 2025 ​ Page 19 of 42

https://github.com/nanopb/nanopb

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Class Description

cognit_config_t A struct which holds the global configuration of
the library, which includes the config to access the
COGNIT instance.

cognit_frontend_cli_t Stores the endpoints of the COGNIT Frontend

edge_cluster_frontend_cli_t Stores the endpoints of an Edge Cluster Frontend

scheduling_t Represents the requirements of the application

e_status_code_t Represents the status code for an offloading.
Possible values: ERROR, SUCCESS

device_runtime_t It stores all the previous structures and needs to
be provided to the Device Runtime module

Version 1.0​ 30 April 2025 ​ Page 20 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

faas_t Stores the function and parameters to be
offloaded

Table 1.7. C Device Runtime classes

Description Method Parameters Return Type

Enables the
developer to
configure the
endpoint,
credentials and
requirements to
connect to the
COGNIT Platform
instance.

device_runtime_init device_runtime_t

cognit_config_t

scheduling_t

faas_t

e_status_code_
t

Adds the function
code string to the
FaaS structure

addFC faas_t

char*

void

Adds a variable as
a parameter to
the FaaS structure

addXVar faas_t void

Adds an array as a
parameter to the
FaaS structure

addXArray faas_t void

Performs the
offloading of the
function to the
Cognit platform
and the execution

device_runtime_call device_runtime_t

scheduling_t

faas_t

e_status_code_
t

Version 1.0​ 30 April 2025 ​ Page 21 of 42

C/C++‎

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

with the
parameters

void**

Table 1.8. C Device Runtime methods

API & interfaces

Due to the fact that the API and interfaces are the same as in the Python version (shown in
D3.3 of M21), we are omitting the same information here for the sake of conciseness.

Device client usage example​
Also available on GitHub repository:

#include <stdio.h>
#include "cognit_http.h"
#include <curl/curl.h>
#include <stdlib.h>
#include <string.h>
#include <device_runtime.h>
#include <unistd.h>
#include <cognit_http.h>
#include <logger.h>
#include <ip_utils.h>

// Function to be offloaded.
char* fc_str = "def my_calc(operation, param1, param2):\n"
 " if operation == \"sum\":\n"
 " result = param1 + param2\n"
 " elif operation == \"multiply\":\n"
 " result = param1 * param2\n"
 " else:\n"
 " result = 0.0\n"
 " return result\n";

size_t handle_response_data_cb(void* data_content, size_t size,
size_t nmemb, void* user_buffer)
{
 size_t realsize = size * nmemb;
 http_response_t* response = (http_response_t*)user_buffer;

 if (response->size + realsize >=
sizeof(response->ui8_response_data_buffer))
 {
 COGNIT_LOG_ERROR("Response buffer too small");
 return 0;

Version 1.0​ 30 April 2025 ​ Page 22 of 42

https://github.com/SovereignEdgeEU-COGNIT/device-runtime-c/blob/dev/examples/minimal-offload-sync-example.c

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

 }

 memcpy(&(response->ui8_response_data_buffer[response->size]),
data_content, realsize);
 response->size += realsize;
 response->ui8_response_data_buffer[response->size] = '\0';

 return realsize;
}

int my_http_send_req_cb(const char* c_buffer, size_t size,
http_config_t* config)
{
 CURL* curl;
 CURLcode res;
 long http_code = 0;
 struct curl_slist* headers = NULL;
 memset(&config->t_http_response.ui8_response_data_buffer, 0,
sizeof(config->t_http_response.ui8_response_data_buffer));
 config->t_http_response.size = 0;

 curl_global_init(CURL_GLOBAL_DEFAULT);

 curl = curl_easy_init();
 if (curl)
 {
 // Set the request header
 headers = curl_slist_append(headers, "Accept:
application/json");
 headers = curl_slist_append(headers, "Content-Type:
application/json");
 //headers = curl_slist_append(headers, "charset: utf-8");

 if (config->c_token != NULL)
 {
 char token_header[MAX_TOKEN_LENGTH] = "token: ";
 strcat(token_header, config->c_token);
 headers = curl_slist_append(headers, token_header);
 }

 if (curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers) !=
CURLE_OK
 // Configure URL and payload
 || curl_easy_setopt(curl, CURLOPT_URL, config->c_url) !=
CURLE_OK
 // Set the callback function to handle the response data
 || curl_easy_setopt(curl, CURLOPT_WRITEDATA,
(void*)&config->t_http_response) != CURLE_OK

Version 1.0​ 30 April 2025 ​ Page 23 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

 || curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION,
handle_response_data_cb) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_TIMEOUT_MS,
config->ui32_timeout_ms) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_SSL_VERIFYPEER, 0L) !=
CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_SSL_VERIFYHOST, 0L) !=
CURLE_OK)
 {
 COGNIT_LOG_ERROR("[http_send_req_cb] curl_easy_setopt()
failed");
 return -1;
 }

 // Find '[' or ']' in the URL to determine the IP version
 // TODO: fix ip_utils to obtain
http://[2001:67c:22b8:1::d]:8000/v1/faas/execute-sync
 // as IP_V6
 if (strchr(config->c_url, '[') != NULL
 && strchr(config->c_url, ']') != NULL)
 {
 if (curl_easy_setopt(curl, CURLOPT_IPRESOLVE,
CURL_IPRESOLVE_V6) != CURLE_OK)
 {
 COGNIT_LOG_ERROR("[http_send_req_cb]
curl_easy_setopt()->IPRESOLVE_V6 failed");
 return -1;
 }
 }

 if (strcmp(config->c_method, HTTP_METHOD_GET) == 0)
 {
 if (curl_easy_setopt(curl, CURLOPT_HTTPGET, 1L) !=
CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_USERNAME,
config->c_username) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_PASSWORD,
config->c_password) != CURLE_OK)
 {
 COGNIT_LOG_ERROR("[http_send_req_cb]
curl_easy_setopt()->get() failed");
 return -1;
 }
 }
 else if (strcmp(config->c_method, HTTP_METHOD_POST) == 0)
 {
 if (curl_easy_setopt(curl, CURLOPT_POST, 1L) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST,

Version 1.0​ 30 April 2025 ​ Page 24 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

"POST") != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE,
size) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_POSTFIELDS,
c_buffer) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_USERNAME,
config->c_username) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_PASSWORD,
config->c_password) != CURLE_OK)
 {
 COGNIT_LOG_ERROR("[http_send_req_cb]
curl_easy_setopt()->post() failed");
 return -1;
 }
 }
 else if (strcmp(config->c_method, HTTP_METHOD_PUT) == 0)
 {
 if (curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "PUT")
!= CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE,
size) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_POSTFIELDS,
c_buffer) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_USERNAME,
config->c_username) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_PASSWORD,
config->c_password) != CURLE_OK)
 {
 COGNIT_LOG_ERROR("[http_send_req_cb]
curl_easy_setopt()->put() failed");
 return -1;
 }
 }
 else if (strcmp(config->c_method, HTTP_METHOD_DELETE) == 0)
 {
 if (curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST,
"DELETE") != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_USERNAME,
config->c_username) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_PASSWORD,
config->c_password) != CURLE_OK)
 {
 COGNIT_LOG_ERROR("[http_send_req_cb]
curl_easy_setopt()->post() failed");
 return -1;
 }
 }
 else

Version 1.0​ 30 April 2025 ​ Page 25 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

 {
 COGNIT_LOG_ERROR("[http_send_req_cb] Invalid HTTP
method");
 return -1;
 }

 // Make the request
 res = curl_easy_perform(curl);

 curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &http_code);
 COGNIT_LOG_INFO("HTTP err code %ld ", http_code);

 // Check errors
 if (res != CURLE_OK)
 {
 long http_code = 0;
 curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE,
&http_code);
 COGNIT_LOG_ERROR("curl_easy_perform() failed: %s",
curl_easy_strerror(res));
 COGNIT_LOG_ERROR("HTTP err code %ld ", http_code);
 }

 // Clean and close CURL session
 curl_easy_cleanup(curl);
 }

 config->t_http_response.l_http_code = http_code;

 // Clean global curl configuration
 curl_global_cleanup();
 curl_slist_free_all(headers);

 return (res == CURLE_OK) ? 0 : -1;
}

cognit_config_t t_config = {
 .cognit_frontend_endpoint =
"https://cognit-lab-frontend.sovereignedge.eu",
 .cognit_frontend_usr = "", // Put your username here.
 .cognit_frontend_pwd = "", // Put your password here.
};

// Set your own App requirements.
scheduling_t app_reqs = {
 .flavour = "FaaS_generic_V2", // Put a
Flavour that your username is allowed to use.
 .max_latency = 100,​ ​ // Max latency

Version 1.0​ 30 April 2025 ​ Page 26 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

required in miliseconds.
 .max_function_execution_time = 3.5,​ ​ // Max
execution time required in seconds.
 .min_renewable = 85,​ ​ // Minimal
renewable energy resources required in percentage.
 .geolocation = "IKERLAN ARRASATE/MONDRAGON 20500"
};

// Set your new App requirements.
scheduling_t new_reqs = {
 .flavour = "FaaS_generic_V2", // Put a
Flavour that your username is allowed to use.
 .max_latency = 80,​ ​ // Max latency
required in miliseconds.
 .max_function_execution_time = 8.5, // Max
execution time required in seconds.
 .min_renewable = 50, // Minimal
renewable energy resources required in percentage.
 .geolocation = "IKERLAN ARRASATE/MONDRAGON 20500"
};

int main(int argc, char const* argv[])
{
 device_runtime_t t_my_device_runtime;
 faas_t t_faas;
 float* exec_response;
 e_status_code_t ret;

 device_runtime_init(&t_my_device_runtime, t_config, app_reqs,
&t_faas);

 addFC(&t_faas, fc_str);

 addSTRINGParam(&t_faas, "sum");
 addINT32Var(&t_faas, 8);
 addFLOATVar(&t_faas, 3.5);

 ret = device_runtime_call(&t_my_device_runtime, &t_faas,
new_reqs, (void**)&exec_response); if (ret == E_ST_CODE_SUCCESS)
 {
 COGNIT_LOG_INFO("Result: %f", *exec_response);
 }
 else
 {
 COGNIT_LOG_ERROR("Error offloading function");
 }
 return 0;
}

Version 1.0​ 30 April 2025 ​ Page 27 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

1.4 [SR1.4] Low memory footprint

Description

In order to comply with this Software Requirement, an analysis of the memory
consumption of the C client was carried out. One of the measures taken to reduce the
memory usage was the choice of using nanopb instead of protobuf-c for the serialization
of the data. Some tests were done to analyse the memory usage of both libraries and the
results obtained can be summarized by the following data:

- Size of the code of protobuf-c + code generated by protobuf-c with the defined 5

messages = 98KB

- Size of the code of nanopb + code generated by nanopb with the define messages =
45KB

Regarding the memory usage in execution, a program was implemented in C which
performed data serialization using both libraries. A series of arrays were defined for
serialization and the memory used in the process was checked. The results were:

- Memory usage with protobuf-c: It varies depending on the number of parameters
defined, as it uses dynamic memory.

- Memory usage with nanopb: 7 KB

As a result, in the tests performed with the C client, the memory usage of the whole
library was.

- Code size: 200 KB

- Memory usage: 120 KB

1.5 [SR1.5] Security

Description

In this development cycle, the integration of the Biscuit token has been integrated to
enhance the authorization procedures of COGNIT. This integration would also allow an

5 https://github.com/protobuf-c/protobuf-c

Version 1.0​ 30 April 2025 ​ Page 28 of 42

https://github.com/protobuf-c/protobuf-c

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

even more advanced authorization scheme with the inclusion of a Keycloak server that
makes use of the token.

Architecture & components

In order to authenticate against the COGNIT Frontend, and hence to the whole COGNIT
Framework, included in the COGNIT Frontend client’s (see SR1.1 of this component)
private API there is a specific method that allows the whole Device Client to be
authenticated to the platform.

Furthermore, in the Device Runtime State Machine implemented on this version, there are
mechanisms to ensure all time that the Device Client is authenticated and otherwise make
sure that it tries to authenticate before performing any other action towards the COGNIT
platform.

API & interfaces

Method Description Arguments Return Type

_authenticate Authenticates
against COGNIT
Frontend.

HTTPBasicAuth with
username and password
gathered from the
configuration file.

Token formatted in a
String.

Returns None
(nothing in Python) in
case of authentication
error.

Table 1.9. Authentication API with a single method

1.6 [SR1.6] Collecting Latency Measurements

Description

One of the requirements for the Device Runtime is to be able to periodically send the
latency between the Edge Cluster Frontend and the Device Client. The Edge Cluster uses
this metric to optimise resource allocation, improve load balancing, and ensure a smoother
user experience by dynamically adjusting its behaviour based on network conditions.

Architecture & components

The Device Runtime State Machine is the component responsible for establishing
communication with the Edge Cluster Frontend. Once connected, it launches a thread that
periodically transmits the experienced latency and the Device Client's location at
user-defined intervals.

Version 1.0​ 30 April 2025 ​ Page 29 of 42

Python

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

With respect to the previous deliverable, the Edge Cluster Frontend Client has also a
method called send_metrics(). This method can be used in the future to communicate
with the Edge Cluster Frontend to provide the latency between these two components. It
also communicates the location of the Device Client. However, this endpoint is not
currently developed in the Edge Cluster Frontend, so it cannot be used.

Description Method Parameters Return Type

Sends location and
latency metrics to the
Edge Cluster Frontend

send_metrics() location: str

latency: int

bool

Table 1.10. API definition of the Edge Cluster Client for latency and location delivery

Device client (Python version) usage examples

import sys
import time
sys.path.append(".")

from cognit import device_runtime

Functions used to be uploaded
def suma(a: int, b: int):
​ return a + b

def mult(a: int, b: int):
​ return a * b

Workload from (7. Regression Analysis) of

https://medium.com/@weidagang/essential-python-libraries-for-machine-
learning-scipy-4367fabeba59

def ml_workload(x: int, y: int):
​ import numpy as np
​ from scipy import stats
​
​ # Generate some data
​ x_values = np.linspace(0, y, x)
​ y_values = 2 * x_values + 3 + np.random.randn(x)
​
​ # Fit a linear regression model

Version 1.0​ 30 April 2025 ​ Page 30 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

​ slope, intercept, r_value, p_value, std_err =
stats.linregress(x_values, y_values)
​
​ # Print the results
​ print("Slope:", slope)
​ print("Intercept:", intercept)
​ print("R-squared:", r_value**2)
​ print("P-value:", p_value)
​
​ # Predict y values for new x values
​ new_x = np.linspace(5, 15, y)
​ predicted_y = slope * new_x + intercept

​ return predicted_y

Execution requirements, dependencies and policies
REQS_INIT = {
 ​ "FLAVOUR": "SmartCity_ice_V2",
}

REQS_NEW = {
 ​ "FLAVOUR": "SmartCity_ice_V2",
 "MAX_FUNCTION_EXECUTION_TIME": 15.0,
"MAX_LATENCY": 45,
 ​ "MIN_ENERGY_RENEWABLE_USAGE": 75,
 ​ "GEOLOCATION": "IKERLAN ARRASATE/MONDRAGON 20500"
}

def get_result(result):
 print("***")
​ print("Sync result: " + str(result))
 print("***")
​ return result

try:

​ # Instantiate a device Device Runtime
​ my_device_runtime =
device_runtime.DeviceRuntime("./examples/cognit-template.yml")
​ my_device_runtime.init(REQS_INIT)

​ # Synchronous offload and execution of a function
​ result = my_device_runtime.call(suma, 17, 5)

 print("---")
​ print("Sum sync result: " + str(result))
 print("---")

​ # Update the requirements
 my_device_runtime.update_requirements(REQS_NEW)

​ # Offload asynchronously a function
​ my_device_runtime.call_async(suma, get_result, 100, 10)

Version 1.0​ 30 April 2025 ​ Page 31 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

​ # Offload and execute a function
​ result = my_device_runtime.call(mult, 2, 3)

 print("---")
​ print("Multiply sync result: " + str(result))
 print("---")

​ # Let's offload a function with wrong parameters
​ result = my_device_runtime.call(mult, "wrong_parameter", "3")

 print("---")
​ print("Wrong result: " + str(result))
​ print("---")

​ # More complex function
​ # Offload and execute ml_workload function
​ start_time = time.perf_counter()
​ result = my_device_runtime.call(ml_workload, 10, 5)

​ end_time = time.perf_counter()

print("--")
​ print("Predicted Y: " + str(result))
​ print(f"Execution time: {(end_time-start_time):.6f} seconds")

print("--")

except Exception as e:
​ print("An exception has occured: " + str(e))
​ exit(-1)

Version 1.0​ 30 April 2025 ​ Page 32 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

2. Edge Cluster

2.1 [SR3.1] Edge Cluster Frontend

Description

The Edge Cluster Frontend is the entry point for offloading functions from the Device
Client in each Edge Cluster. It acts as a load balancer to handle the redirection to the
correct Serverless Runtime running within the particular Edge Cluster. As stated in the
D2.4 Framework architecture document, requirement SR3.1 is satisfied by this component.
In this cycle, the architecture of the Edge Cluster Frontend has been changed in order to
improve the load balancing and scalability of the COGNIT Framework. The changes that
have been implemented in this development cycle are related only to the implementation
of the internal architecture of the Edge Cluster Frontend (reported in the following
section) without any change to the API used by the device client. The Data Model and API
& Interfaces of the Edge Cluster Frontend are the same as reported in Deliverable D3.3.

Architecture

The Edge Cluster Frontend key functionality is to proxy the connection from the Device
Clients to a particular Serverless Runtime running in the Edge Cluster to which the Edge
Cluster Frontend is bound to. Its main goal will be coherently load balancing the requests
coming from the different devices according to the different flavours of Serverless
Runtimes.

As shown in Figure 2.1, the Edge Cluster Frontend when receives a request from a device
client, creates a new thread that manages the connection with the device itself, sends the
request to a queue (‘Execution Request Queue’) corresponding to the Serverless Runtime
flavour required by the device, and waits for the result from a temporary queue associated
to an Exchange (‘Result Exchange’) before sending the result to the device client.

Each Serverless Runtime will wait for requests available on the ‘Execution Request Queue’
corresponding to its flavour and once there is a request to be served, the selected
Serverless Runtime will be in charge of executing the function and will send the result to a
temporary queue corresponding to the ‘Result Exchange’ once the function has been
executed.

Each Edge Cluster Frontend thread is a producer for the ‘Execution Request Queue’ and a
consumer for the result queues. For the result, the thread will consume the result that is
related to its request (identified by a request id).

Each Serverless Runtime is a consumer for the ‘Execution Request Queue’ (the dispatch of
the requests to a Serverless Runtime is based on a round robin strategy) and a producer
for the result queue.

Version 1.0​ 30 April 2025 ​ Page 33 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Figure 2.1. Interaction between Device Client and Edge Cluster.

Data model

The same as reported in Deliverable D3.3

API & Interfaces

The same as reported in Deliverable D3.3

2.2 [SR3.2] Secure and Trusted Serverless Runtimes

Description

The current development cycle has introduced new Prometheus metrics to support
AI-Enabled Orchestrator decision-making. Additionally, some of the previous metrics have
been updated, and all the metrics have been renamed so that they all start with the string
“sr_”, making it easy to identify the metrics coming from the Serverless Runtimes in the
COGNIT Prometheus Server. Specifically, the following implementations have been done:

Change 1: Update previous “func_exec_time”:

●​ Modify metric name to “sr_last_func_exec_time”
●​ Remove label “param_l_0”
●​ Remove label “param_l_1”
●​ Add a new label “total_param_size”, which shows the total size of the input

parameters of the function, in Bytes.

Change 2: Add a new metric gauge for function execution status

●​ Metric name: “sr_func_status”

Version 1.0​ 30 April 2025 ​ Page 34 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

●​ It reflects the current status of the running function. An enum like {id ↔ state} map
has been implemented to translate a specific state to an integer, so that it can be
represented using a Prometheus gauge.

●​ Labels:
○​ “func_hash”: Hash of the function
○​ “vm_id”: ID of the Virtual Machine
○​ “total_param_size”: represents the total size of the input parameters of the

function, in Bytes.
●​ Possible values:

○​ “RUNNING”: 1.0
○​ “IDLE”: 0.0

Change 3: Add a new metric counter for executed function number

●​ Metric name: “sr_func_executed_total”
●​ Counter that counts the number of functions that have started being executed

(regardless of the function result).
●​ Labels:

○​ “vm_id”: ID of the Virtual Machine

Change 4: Add a new metric counter for successful execution number

●​ Metric name: “sr_func_succeeded_total”
●​ Counter that counts the number of functions that have been successfully executed.
●​ Labels:

○​ “vm_id”: ID of the Virtual Machine

Change 5: Add a new metric counter for failed execution number

●​ Metric name: “sr_func_failed_total”
●​ Counter that counts the number of functions that have failed to be executed.
●​ Labels:

○​ “vm_id”: ID of the Virtual Machine

Change 6: Add new metric histogram for function execution time

●​ Metric name: “sr_histogram_func_exec_time_seconds”
●​ Records the execution time of the offloaded functions. This metric is an evolution

of the previously defined gauge metric: “sr_last_func_exec_time”. However, the
previous gauge metric is still used in this development cycle.

●​ Labels:
○​ “function_outcome”: Either “success” or “error”.
○​ “le”: A label of the Prometheus histograms that defines the bucket range.
○​ “vm_id”: ID of the Virtual Machine

●​ Buckets (possible values):
○​ time < 1s
○​ time < 5s
○​ time < 10s

Version 1.0​ 30 April 2025 ​ Page 35 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

○​ time > 10s

Change 7: Add new metric histogram for function input size

●​ Metric name: “sr_histogram_func_input_size_bytes”
●​ Records the input size of the function parameters
●​ Labels:

○​ “function_outcome”: Either “success” or “error”.
○​ “le”: A label of the Prometheus histograms that defines the bucket range.
○​ “vm_id”: ID of the Virtual Machine

●​ Buckets (possible values):
○​ size < 1KB
○​ size < 1MB
○​ size < 1GB
○​ size > 1GB

In this development cycle, the Serverless Runtime had to be modified to support the new
C Device Runtime. As mentioned, the messages received from the C client will be
serialized with Protobuf, so the following changes were made:

●​ The “LANG” key is checked. A “C” value indicates that the message is coming from a
C client

●​ If the request is coming from a C client, the function and parameters are
deserialized by using Protobuf. The files to deserialize and be able to load these
data into Python classes are generated by the process described in the section of
SR1.3.

●​ Once the function and the parameters are deserialized the execution of the
function is done, and the result is serialized with Protobuf to be returned to the C
client.

Architecture & Components

No changes have been made from an architectural point of view.

Data Model

The data model of the Serverless Runtime remains the same as in the previous
development cycle

API & Interfaces

There are no changes in the API & Interface of the Serverless Runtime in this development
cycle.

Version 1.0​ 30 April 2025 ​ Page 36 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

3. Secure and Trusted Execution of Computing Environments

3.1 Threat Model

In deliverable D3.3, section 4, a threat assessment has been performed on the framework
architecture by creating its threat model. A Microsoft tool called Microsoft Threat
Modeling (MTM) has been used for the modelling work.

10 threats had been identified based on the model, and with the help of the MTM tool.
These threats had been related to different categories like Tampering, Repudiation,
Information Disclosure, Denial of Service, and Elevation of Privilege. Attacks can be as
different as Collision, Replay, Data Repudiation by COGNIT Frontend, Weak Authentication
Scheme, Interruption of Data Flow, Process Crash or Stop, Elevation of Privilege using
Remote Code Execution.

This section considers how some of these threats can be exploited through attack flows
targeting specific assets of the cybersecurity use case. More specifically, we consider the
attacks that can impact the Serverless Runtime. This section will quantify, among all the
threats identified in deliverable D2.5, the FaaS threats. It also helps evaluate the
associated risks by outlining the attack scenario

Inside the COGNIT Architecture, the Serverless Runtime is responsible for the execution of
the function provided by the client. With this central property, it will be the target for a
threat analysis. This one will consist of evaluating how a possible attack can impact such a
module, and through which specific threats, as listed previously. Figure 3.1 summarizes the
COGNIT architecture and the interactions between the Device Client and the COGNIT
Framework.

Figure 3.1. Device Client interaction with the COGNIT Platform.

The Device Client could be a source of threats, and the same for a successful
implementation of a Man In the Middle attack (MITM) in the communications between the

Version 1.0​ 30 April 2025 ​ Page 37 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Device Client and the COGNIT Framework. Figure 3.2 presents the introduction of a MITM
attack.

Figure 3.2. Man in the Middle attack

Our approach describes an attack flow, represented in Figure 3.2. It starts from a
successful “Man In the Middle" attack between the device and the COGNIT Framework.
With this attack between the Device Client and the COGNIT Frontend, exploiting
misconfigured VPN or TLS settings can lead to bypass encryption, and stealing valid
authentication access tokens. The attacker is therefore able:

-​ to replay the token, to impersonate a legitimate device client, and to access
restricted APIs; it can intercept API requests, with a risk of session hijacking and
credential theft, allowing unauthorized function execution; the attacker can spoof
a legitimate function’s identity to access confidential data or invoke other
functions; the attacker can spoof legitimate event data to manipulate serverless
processing;

-​ to disrupt data communication coming from the client, like metrics for measuring
latency against the different edge clusters, disrupting the AI-enabled
orchestrator to make decisions about the provisioning of Edge Clusters that have
to satisfy latency requirements from the application;

-​ to disrupt the data uploading that can be used by the device functions; unvalidated
input can lead to data leaks, or function hijacking;

-​ to disrupt the data uploading, that can lead the serverless function to process a
large dataset or to handle unexpected input sizes; the function is then able to
exceed memory limits of the Serverless runtime and to crash it, disrupting
service continuity;

Version 1.0​ 30 April 2025 ​ Page 38 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

-​ to disrupt the data uploading, that can also lead to Denial of Service (DoS), by
sending extremely large inputs, causing resource exhaustion or even crashes, by
forcing repeated failures and exhausting retry mechanisms;

-​ to disrupt the uploading of application requirements that will be stored and used
subsequently by the AI-Enabled Orchestrator for optimising the resources needed
by the devices to offload functions related to the application;

-​ to install a backdoor inside the Serverless runtime, linking to the device client;
-​ The attacker spoofs the identity of a trusted service, tricking the function into

accepting malicious requests.

-​ Serverless functions rely on event-driven inputs (API calls, webhooks, message
queues), which, if not validated, can be exploited for injection attacks; Attackers
can send malformed or malicious payloads to bypass security controls and
manipulate serverless execution.

-​ The attacker injects crafted event payloads to execute unauthorized actions.
-​ A function relies on another function's response to determine its execution but

lacks safeguards against recursion; the attacker crafts responses that trigger an
endless loop, leading to resource exhaustion (Denial of Service) of the cluster for
other processes.

The following picture synthesizes these consequences of a successful MITM attack, with
impact on the Serverless, and the Artificial Intelligence (AI) orchestrator. It models the kill
chain on these two assets.

Within this diagram, blue rectangles represent actions expressing the steps of the attack.
In this case, the first step is a successful insertion of a MITM. The rectangles in orange
represent the asset targeted by a specific previous action.

Or connectors in red indicate that an asset can be followed by different steps of the attack
process. Conversely, they also indicate that different actions can concern the same asset.

Grey rectangles indicate the final result and incidence for each specific branch of a kill
chain.

Version 1.0​ 30 April 2025 ​ Page 39 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

Figure 3.3. Attack flow diagram modeling the kill chain in the case of a Man In The Middle Attack.

Figure 3.3 depicts an end-to-end attack flow scenario impacting the Serverless Runtime
services, and the AI Orchestrator.

Concerning the Serverless Runtime, the attack starts with compromised communications
between the mobile device and the edge cluster with a MITM attack:

1.​ A valid authentication token is replayed to impersonate a legitimate Device Client,
leading to possible disruption of data uploading, or disruption of the uploading of
application requirements, or disruption of data communications.

2.​ Disruption of data uploading or uploading of application requirements can affect
serverless processing.

Version 1.0​ 30 April 2025 ​ Page 40 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

3.​ Spoofing legitimate function identity, spoofing legitimate event data, and sending
large dataset inputs, are actions for disrupting the normal behaviour of the
serverless runtime.

4.​ This can lead to manipulation of serverless processing, that leads to a SLA violation
on anomaly detection service.

5.​ It can also lead to more severe consequences for the serverless, like a crash, a
Denial-of-service, a trigger of endless loop leading to resource exhaustion, a
forcing of repeated failures exhausting retry mechanisms. Extremely large inputs
can also cause resource exhaustion. All of these are able to lead to a failure of
anomaly detection.

6.​ The disruption of data communication coming from the client, like metrics for
measuring latency against the different edge clusters affects the AI orchestrator to
make decisions about the provisioning of edge clusters that have to satisfy latency
requirements from the application.

The impact can lead to loss of service availability, resulting from a crash, repeated failure,
or denial of services (DoS). It can also lead to a degradation of service resulting from a
manipulation of the functionalities and serverless execution, leading to a deterioration of
the normal expected results.

3.2 [SR6.1] Advanced Access Control

Description

This was implemented in the previous cycle, for more details, see Deliverable 3.3

3.3 [SR6.2] Confidential Computing Requirement

Description

The Confidential Computing requirement aims to provide a countermeasure at the edge to
be able to process confidential or private data in an edge environment that is exposed to
multiple threats and is not inherently trusted.

By leveraging hardware-based Trusted Execution Environments, Confidential Computing
enables sensitive data and code to be processed in isolated, secure enclaves that protect
against unauthorized access, even from privileged system software. This ensures that
critical operations at the edge can maintain confidentiality and integrity, despite operating
in potentially vulnerable or untrusted locations. This is particularly relevant in the
scenarios that COGNIT Project is examining, where data is collected and processed close to
the source, at remote edge nodes, and where centralized security controls may not be
feasible or sufficient.

In this context, COGNIT has integrated Confidential Computing capabilities into the
framework and initiated the deployment of CC-enabled components within the testbeds.
These deployments aim to validate the practical use of CC enclaves for secure data and
workload execution at the edge. The Cybersecurity use case will serve as the main scenario

Version 1.0​ 30 April 2025 ​ Page 41 of 42

SovereignEdge.Cognit–101092711 D3.4 COGNIT FaaS Model - Scientific Report - d

for testing these capabilities, assessing the effectiveness of CC in protecting sensitive
operations and data flows.

Version 1.0​ 30 April 2025 ​ Page 42 of 42

	
	Abbreviations and Acronyms
	1. Device Client
	1.1. [SR1.1] Interface with COGNIT Frontend
	1.2 [SR1.2] Interface with Edge Cluster
	1.3 [SR1.3] Programming languages
	
	1.4 [SR1.4] Low memory footprint
	1.5 [SR1.5] Security
	1.6 [SR1.6] Collecting Latency Measurements

	
	2. Edge Cluster
	2.1 [SR3.1] Edge Cluster Frontend
	2.2 [SR3.2] Secure and Trusted Serverless Runtimes

	3. Secure and Trusted Execution of Computing Environments
	3.1 Threat Model
	3.2 [SR6.1] Advanced Access Control
	3.3 [SR6.2] Confidential Computing Requirement

	

