‘ SovereignEDGE .

A Cognitive Serverless Framework for the Cloud-Edge Continuum

D3.3 COGNIT FaaS Model -
Scientific Report - c

Version 1.0

11 November 2024

Abstract

COGNIT is an Al-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
Continuum that enables the seamless, transparent, and trustworthy integration of data
processing resources from public providers and on-premises data centers in the
Cloud-Edge Continuum. The main goal of this project is the automatic and intelligent
adaptation of those resources to optimise where and how data is processed according to
application requirements, changes in application demands and behaviour, and the
operation of the infrastructure in terms of the main environmental sustainability metrics.
This document describes the research and development carried out in WP3 “Distributed
FaaS Model for Edge Application Development” during the Third Research & Innovation
Cycle (M16-M21), providing details on the status of a number of key components of the
COGNIT Framework (i.e. Device Client, COGNIT Frontend, and Edge Cluster) as well as
reporting the work related to supporting the Secure and Trusted Execution of Computing
Environments.

‘7& Copyright © 2023 SovereignEdge.Cognit. All rights reserved.

This project is funded by the European Union’s Horizon Europe research and innovation
programme under Grant Agreement 101092711 — SovereignEdge.Cognit

@@@@ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
DM |nternational License.

https://cognit.sovereignedge.eu/

SovereignEdge.Cognit-101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

Deliverable Metadata

Project Title:

A Cognitive Serverless Framework for the Cloud-Edge Continuum

Project Acronym: SovereignEdge.Cognit

Call: HORIZON-CL4-2022-DATA-01-02

Grant Agreement: 101092711

WP number and Title: WP3. Distributed FaaS Model for Edge Application Development
Nature: R: Report

Dissemination Level: PU: Public

Version: 1.0

Contractual Date of Delivery: | 30/09/2024

Actual Date of Delivery: 11/11/2024

Lead Author: Idoia de la Iglesia (lkerlan)
Authors: Monowar Bhuyan (UMU), Malik Bouhou (CETIC), Aritz Brosa (Ikerlan), Christophe
Ponsart (CETIC), Jean Lazarou (CETIC), Fatima Fernandez (Ikerlan), Torsten
Hallmann (SUSE), Johan Kristiansson (RISE), Marco Mancini (OpenNebula),
Alberto P. Marti (OpenNebula), Philippe Massonet (CETIC), Nikolaos Matskanis
(CETIC), Daniel Olsson (RISE), Mikel Irazola (lkerlan), Alvaro Puente (Ikerlan),
Thomas Ohlson Timoudas (RISE), Paul Townend (UMU), Ivan Valdés (Ikerlan),
Constantino Vazquez (OpenNebula), Daniel Clavijo (OpenNebula), Jorge Lobo
(OpenNebula), Michal Opala (OpenNebula).
Status: Submitted
Document History
Version Issue Date Status’ Content and changes
0.1 24/10/2024 Draft Initial Draft
0.2 05/11/2024 Peer-Reviewed Reviewed Draft
1.0 11/11/2024 Submitted Final Version
Peer Review History
Version Peer Review Date Reviewed By
0.1 30/10/2024 Yashwant Singh Patel (UMU)
0.1 05/11/2024 Antonio Alvarez (OpenNebula)

Summary of Changes from Previous Versions

First Version of Deliverable D3.3

" A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

Version 1.0

11 November 2024

Page 2 of 41

https://cordis.europa.eu/project/id/101092711

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Executive Summary

This is the third “COGNIT FaaS Model - Scientific Report” that has been produced in WP3
“Distributed FaaS Model for Edge Application Development”. It describes in detail the
progress of the software requirements stated in deliverable D2.4 that have been active
during the Third Research & Innovation Cycle (M16-M21) in connection with these main
components of the COGNIT Framework:

Device Client

e SR1.1 Interface with COGNIT Frontend

Implementation of the communication of the Device Client with the COGNIT
Frontend.

e SR1.2 Interface with Edge Cluster
Implementation of the communication of Device Client with the Edge Cluster.

e SR1.3 Programming languages
Support for different programming languages.

e SR1.5 Security
Device Runtime must be secured.

COGNIT Frontend

e SR2.1 COGNIT Frontend
Provides an entry point for devices to communicate with the COGNIT

Framework for offloading the execution of functions and uploading global
data.

Edge Cluster

e SR3.1 Edge Cluster Frontend
The Edge Cluster must provide an interface (Edge Cluster Frontend) for the
Device Client to offload the execution of functions and to upload local data
that is needed to execute the function.

e SR3.2 Secure and trusted Serverless Runtimes
The Serverless Runtime is the minimal execution unit for the execution of
functions offloaded by Device Clients.

Secure and Trusted Execution of Computing Environments

e SR6.1 Advanced Access Control
Implement policy-based access control to support security policies on
geographic zones that define a security level for specific areas.

e SR6.2 Confidential Computing

Enable privacy protection for the FaaS workloads at the hardware level using
Confidential Computing (CC) techniques.

Version 1.0 11 November 2024 Page 3 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

This deliverable has been released at the end of the Third Research & Innovation Cycle
(M21), and will be updated with incremental releases at the end of each research and
innovation cycle in M27, and M33.

Version 1.0 11 November 2024 Page 4 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Table of Contents

Abbreviations and Acronyms
1. Device Client
1.1 [SR1.1] Interface with COGNIT Frontend
1.2 [SR1.2] Interface with Edge Cluster
1.3 [SR1.3] Programming languages
1.4 [SR1.5] Security
2. COGNIT Frontend
2.1 [SR2.1] COGNIT Frontend
3. Edge Cluster
3.1 [SR3.1] Edge Cluster Frontend
3.2 [SR3.2] Secure and Trusted Serverless Runtimes
4. Secure and Trusted Execution of Computing Environments
4.1 [SR6.1] Advanced Access Control
4.2 [SR6.2] Confidential Computing

10
13
15
16
18
18
24
24
28
30
41
41

Version 1.0 11 November 2024

Page 5 of 41

SovereignEdge.Cognit-101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

Abbreviations and Acronyms

Al Artificial Intelligence
API Application Programming Interface
CFE COGNIT Frontend Engine
CORS Cross Origin Resource Sharing
CPU Central Processing Unit
Daa$S Data as a Service
DC Device Client
ECFE Edge Cluster Frontend Engine
Faas Function as a Service
GDPR General Data Protection Regulation
HOTP HMAC based One Time Password
HTTP Hypertext Transfer Protocol
HMAC Hash based Message Authentication Code
HW Hardware
1AM Identity and Access Management system
IP Internet Protocol
JSON Javascript Object Notation
JWT JSON Web Token
LDAP Lightweight Directory Access Protocol
OAuth2.0 Open Authentication 2.0
PE Provisioning Engine
REST Representational State Transfer
SAML Security Assertion Markup Language
SDK Software Development Kit
SPI Service Provider Interfaces
SR Serverless Runtime (with no number)
SRx Software Requirement (with a number associated, e.g.: SR1.1)
SSL Secure Sockets Layer
TEE Trusted Execution Environments
TLS Transport Layer Security
TOTP Time based One Time Password
VM Virtual Machine
YAML Yaml Ain’t a markup language
Version 1.0 11 November 2024 Page 6 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

1. Device Client

The Device Client uses the COGNIT library through which you can extract the
DeviceRuntime class. This class will provide two methods with which the client device can
communicate with the COGNIT Cloud-Edge Continuum. The first method, init(), will initiate
communication with COGNIT by means of an exchange of requirements and
authentication. Therefore, it will be necessary to provide to this method a valid
authentication file with valid credentials.

Once the communication is initialised, it is possible to use the call() method. The call()
method will allow the client device to upload functions to the COGNIT cloud and execute
them from there. To do so, it is necessary to provide the function as well as the parameters
with which the function is to be executed. An example demonstrating how this library is
used is provided at the end of Section 1.4. The following table summarises how these two
functions work:

Description Method Parameters Return Type
Authenticates the device with the | init() A dict python object containing | Nothing
CFE to get a valid biscuit token. the application requirements.

Uploads the initial application
requirements to the DaaS

gateway.

Executes different actions call() Function to be offloaded Result code,
(upload/ update/ delete app (Callable type) Any
requirements, get ECFE

endpoint...) depending on the App requirements (dictionary

internal state of the Device type, optional)

Runtime.

Table 1.1. API definition of the DeviceRuntime class

New architecture lifecycle management

In order to support the management of the lifecycle of the new components introduced in
this version of the architecture, another component, the Device Runtime State Machine,
has been implemented.

Device Runtime State Machine adds an additional layer of abstraction to the Device Client.
Instead of manually invoking the set of functionalities from the Cognit and Edge Cluster
clients, the communication is done automatically based on the state of the
communication. In other words, the Device Runtime State Machine now governs when
specific actions, such as task offloading or requirement updates, are executed. Following
this approach, the Device Client now only has to execute a few sets of Functions that
trigger transitions between different states, simplifying the overall communication flow.

Specifically the state machine operates around two core functions: offload_function() and
update_requirements(), ignoring the complexity of the communication process.

Version 1.0 11 November 2024 Page 7 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

W offload_function() acton

LU —— > Device Runtime

Device Client » State Machine

J update_requirements()

Figure 1.1. Device Client - Device Runtime State Machine workflow

The usage of these two functions serves as the catalyst for generating changes in the state
of the state machine. Each state represents a distinct stage in the communication process
between the two Frontends. For example, invoking offload_function() may trigger a
transition from a waiting state to an offloading state, indicating that the device is actively
transferring tasks to the Edge Cluster. Similarly, update_requirements() can update the
necessary computational resources or other prerequisites, which may move the state
machine to a negotiation or validation state. As a result, the Device Client is simplified, as
it no longer needs to manage the entire communication process manually. Instead, the
state machine handles transitions, event-driven changes, and the flow of information
between the Frontends, enabling more efficient task execution and reducing potential
errors from manual state management.

Architecture & components of the Device Runtime State Machine

The Device Runtime State Machine is composed of a set of four states. Each of these
states represents a particular situation in the communication process between the Device
Client and the COGNIT framework. The different states work as follows:

e INIT. This is the initial state of the communication process, where the user has not
yet been authorised on the Frontend.

e SEND_INIT_REQUEST. Once the user is authorised, they are permitted to upload
offloading requirements for their functions. This state handles that process.

e GET_ECF_ADDRESS. After successfully uploading the requirements, the system
transitions to this state, where it waits for and requests the address of the Edge
Cluster (ECF) that will handle the user's requests.

e READY. If all prior steps are completed, the state machine enters the READY state,
indicating it is prepared to offload the user's client functions to the most suitable
virtual machine based on the requirements.

The transition from one state to another does not follow a linear path and it always
depends on the particular situation of the communication. These situations are tracked by
the state machine using variables that are checked before a transition is produced. In this
manner, the path to the states will be different depending on the value of these variables.
Some of the different situations that are tracked are:

e A successful or not authentication from the user.
e The correct uploading of the requirements to the COGNIT framework.

e A continuous track of the state of the communication session with the Frontend
clients.

e The obtention of a correct address to the Edge Cluster attendant.

Version 1.0 11 November 2024 Page 8 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Data Model of the Device Runtime State Machine

Two different data structures are used in the communication with the Device Runtime
State Machine. On the one hand, the ExecResponse model is used to retrieve the result
from the function offloading using offload_function(). On the other hand, the Scheduling
model is the following structure to send the requirements in the update_requirements()
function.

Attribute Description Fields Type

ExecResponse Response of a ret_code: Inherits from
generic execution, ExecReturnCode pydantic BaseModel
with its return code, res: str (Optional)
result and error if err: str (Optional)
applicable.

Scheduling String describing the | POLICY: str Inherited from
policy applied to REQUIREMENTS: str pydantic’s
scheduling. Eg: BaseModel
“energy, latency” will
optimise the
placement according
to those two criteria.

Table 1.2. Data Model defining the Device Client's interaction
with the Device Runtime state machine.

API & interfaces of the Device Runtime State Machine

As it was previously mentioned, there are two different ways to communicate with the
Device Runtime State Machine: offload_function() and update_requirements().

The offload_function() functions allows the user to upload a function and process it taking
into account the requirements that were previously uploaded. The user does not have to
care about how the result is obtained. For now, there is no option to upload a function
asynchronously, the execution of this function will block the thread until the result is
given.

The other way to interact with the state machine and, therefore, with the COGNIT
Frontend, is using the update_requirements() function. This function allows the user to
upload the requirements that its application needs for processing its data. It can be called
whenever the requirements are needed to change. This function will upload the
requirements so later, when the user wants to offload a new function, a new Edge Cluster
Frontend will attend those petitions. As well as it occurs with the offload_function(), it
abstracts the complexity of how the requirements are uploaded.

Version 1.0 11 November 2024 Page 9 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Description Method Parameters Return Type

Perform the offload of a Func: Callable

function to the QOGNIT offload_Function args: Any [Bundled as ExecResponse.
platform and wait for the L
positional arguments]
result
Uploads or updates the . .
. . requirements:
current requirements for update_requirements None.

the Device Client Scheduling

Table 1.3. API that defines the Device Runtimestate machine functions to perform actions in the
COGNIT framework

1.1 [SR1.1] Interface with COGNIT Frontend

Description

The COGNIT Frontend Client is an integral component of the Device Runtime, facilitating
interaction with the COGNIT Frontend Engine.

This client provides several key functionalities. Firstly, it supports the uploading, updating,
and deletion of user-defined application requirements. Secondly, it enables the uploading
of functions to the DaaS gateway. Lastly, it facilitates the retrieval of the most optimal
COGNIT Edge Cluster Frontend Engine (ECFE) endpoint for task offloading.

The COGNIT Frontend Client employs an internal flag (‘has_connection’) to indicate the
current connection status, allowing other modules within the Device Runtime to check this
flag. Additionally, it maintains an internal variable that maps uploaded functions to the IDs
assigned by COGNIT, thereby minimising the processing overhead associated with
re-uploading existing functions.

Architecture & Components

This deliverable introduces the first implementation of the Python class Edge Cluster
Client. While this initial version is developed in Python, future iterations will also provide
the client in the C programming language. This client does not make use of any other
component to achieve the communication with the Edge Cluster.

Data model

The data model of the interaction with the COGNIT Frontend Engine defines all the fields
expected by the COGNIT Frontend Engine for requests and responses.

The ‘UploadFunctionDaaS’ data model follows the structure defined in ‘ExecSyncParams’of
the previous version.

Version 1.0 11 November 2024 Page 10 of 41

SovereignEdge.Cognit-101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

Attribute Description Fields Type
Scheduling Object containing FLAVOUR: str Inherited from
the information of _ _ pydantic’s
the application MAX_LATENCY: int (optional) BaseModel
requirements.
MAX_FUNCTION_EXECUTION_TIME:
float (optional)
MIN_ENERGY_RENEWABLE_USAGE:
int (optional)
GEOLOCATION: str (required if
MAX_LATENCY is defined, optional
otherwise)
FunctionLan | String defining the | PY ="PY" Enum
guage language of the
offloaded function. | C="C"

UploadFunct | Object containing

LANG: FunctionLanguage

Inherited from

Edge Cluster
obtained from the
COGNIT Frontend
Engine.

HOSTS: list[int]
DATASTORES: list[int]
VNETS: list[int]

TEMPLATE: dict

ionDaaS the information pydantic’s
(language,function | FC:str BaseModel
and hash) about the
function to be FC_HASH: st
uploaded to the
DaaS gateway.
EdgeCluster | Object containing ID:int Inherited from
FrontendRes | the information pydantic’s
ponse about the optimal | NAME: str BaseModel

Table 1.4. Data model of the COGNIT Frontend Client component.

API & Interfaces

The COGNIT Frontend Client is composed of several private methods, as depicted in Table
1.5, which are abstracted from the user and are used to interact with the COGNIT Frontend

Engine.

Description

Method

Parameters

Return Type

Used to delete the
application
requirements
using the id stored
as a class variable.

_app_req_delete

None

Bool indicating if the
app requirement has
been deleted.

Version 1.0

11 November 2024

Page 11 of 41

SovereignEdge.Cognit-101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

Get the _app_req_read None Scheduling type object
application containing the
requirements information about the
using the id stored application

as a class variable. requirements.

Update the _app_req_update new_regs: Bool indicating if the
application Scheduling app requirement has
requirements been updated.

using the id stored

as a class variable.

Authenticates the | _authenticate None Biscuit_token: str
device with the

CFE to get a valid

biscuit token.
Uploads the initial
application
requirements to
the DaaS gateway.

Check if
GEOLOCATION
field has a value
for the cases that
MAX_LATENCY is
defined

_check_geolocation_valid

reqgs: Scheduling

is_valid: bool

Get the endpoint

_get_edge_cluster_address

None

String containing the

of the optimal endpoint.

Edge Cluster.

Serialize and _serialize_and_upload_fc_to | func: Callable None

upload the _daas_gw

function to the

DaaS gateway.

Add uploaded

function id to class

variable map.

Perform the _upload_fc fc: func_id: int

upload of the UploadFunctionDa

serialised as

function.

Getter for the get_has_connection None Bool indicating if the

“has_connection” COGNIT FEClient has

flag. connection with the
COGNIT Frontend.

Perform the init initial_regs: Bool indicating the

authentication Scheduling status of the

and upload the
initial app
requirements

initialization.

Version 1.0

11 November 2024

Page 12 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Setter for set_has_connection new_value: bool None
“has_connection”
fla.

Table 1.5. API definition of the Cognit Frontend Client component.

1.2 [SR1.2] Interface with Edge Cluster

Description

The Edge Cluster Client is the component from the Device Runtime that manages the
entire communication process with the Edge Cluster. The Edge Cluster serves as an
intermediary between the Device Client and the Serverless Runtimes (via the Edge
Cluster) that run across the Cloud-Edge Continuum. Therefore, to interact with these
Serverless Runtimes, the Edge Cluster Client must be capable of executing certain
directives from the Edge Cluster, which will, in turn, affect the Serverless Runtimes.

Currently, there is only one directive that interacts with the Edge Cluster. This directive can
be accessed through the REST APl incorporated into the Edge Cluster if a correct
authentication was properly done in the COGNIT Frontend. This directive allows the
synchronous retrieval of the result of a function execution, previously uploaded, by
supplying the arguments and the identification of the corresponding function.

In essence, the Edge Cluster Client is an HTTP client that interacts with the Edge Cluster
using its endpoints. The usage of this client is hidden from the end user, as it is managed
by the Device Runtime State Machine. The end user simply calls the call() function to
retrieve the result of an offloaded function. The State Machine handles this method to
ensure that the user receives the result of a function execution. Among other tasks, when
calling the call() method, the State Machine will eventually contact the Edge Cluster to
obtain the result.

Architecture & components

This deliverable introduces the first implementation of the Python class Edge Cluster
Client. While this initial version is developed in Python, future iterations will also provide
the client in the C programming language. This client does not make use of any other
component to achieve the communication with the Edge Cluster. However, it is initialised
with information that has to be obtained from the COGNIT Frontend.

To instantiate an Edge Cluster Client, you need the token obtained during the initial
communication with the COGNIT Frontend. Additionally, the communication with the
COGNIT Frontend provides the address of the specific Edge Cluster that will handle the
device client’s requests. Both the token and the address are essential for initialising the
Edge Cluster Client.

Data Model

Table 1.6 describes the data model followed by the Edge Cluster Client in order to achieve
a successful communication with the Edge Cluster. In other words, the following attributes
define all the fields expected by the Edge Cluster:

Version 1.0 11 November 2024 Page 13 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Attribute Description Fields Type
FunctionLanguage String describing the PY = “PY” Enum
language of the offloaded o
Function. c="C
ExecutionMode String describing how the | SYNC = “sync” Enum

function is going to be

executed ASYNC = "async”

ExecReturnCode String describing if the | SUCCESS=0 Enum

execution of the function

went successfully or not. ERROR =-1
ExecResponse Information obtained | ret_code: Inherited
after a synchronous | ExecReturnCode from
execution of an offloaded) pydantic’s
function. res: str BaseModel
err: str

Table 1.6. Data Model followed by the Edge Cluster Client

API & interfaces

In this release, three key methods have been implemented for this client:
execute_function(), get_has_connection(), and set_has_connection(), along with auxiliary
functions that support their functionality.

1.

The execute_function() method is responsible for executing a function on the Edge
Cluster via a REST API. It sends two query parameters: mode (which defines the
execution mode, such as synchronous or asynchronous) and req_id (that identifies
with which requirements the function is going to be executed). The function will
create a POST request to the endpoint “<address>/v1/functions/<func_id>/execute”
that will trigger the execution of the defined function.

The body of the request contains the serialised parameters required for the
function's execution. Currently, only synchronous execution mode is supported,
meaning that the client waits for the result of the function execution in real-time. If
the client does not receive a response or receives an unexpected response, the
connection is considered lost, and appropriate error handling should be
implemented. Future support for asynchronous execution is planned but not yet
available

get_has_connection() and set_has_connection(): These methods are responsible for
retrieving and updating the client's current connection status. A disconnection is
detected if the client receives an HTTP status code equal or higher than 400

Version 1.0 11 November 2024 Page 14 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

(meaning that either a client error or a server error has happened during a request).
The connection status is also considered during the creation of the client
depending on the parameters received in the constructor.

Table 1.7 summarises what the explained methods do. Future versions of the client will
expand functionality to include communication of the Device Client’s current location and
latency, aligning with the overall development objectives.

Description Method Parameters Return Type

func_id: string

app_req_id:
string
Communicates with the result:
Edge Cluster to start the execute_function() exec_mode: E R‘
execution of a function. ExecutionMod = “X€CRESPONSE
e
params:
List[str]
Get the current has_connection:
connection status for the get_has_connection() - Bool)
client.
Sets the connection set_has_connection() connection_st
status of the client - atus: Bool

Table 1.7. API defining the Edge Cluster Client interaction with the Edge Cluster

1.3 [SR1.3] Programming languages

Description

Being the first version of the v2 of the architecture, all the developments have been
focused on the Python version of the Device Client. Its C version remains to be designed
and developed in the following development cycles to comply with the needs of the v2
architecture. Several preliminary discussions have taken place about how to structure the
v2 of the C version of the client.

Version 1.0 11 November 2024 Page 15 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

1.4 [SR1.5] Security

Description

In this development cycle the integration of the Biscuit token has been integrated for
enhancing the authorization procedures of COGNIT. This integration would also allow an
even more advanced authorization scheme with the inclusion of a Keycloak server that
makes use of the aforementioned token.

Architecture & components

In order to authenticate against the COGNIT Frontend, and hence to the whole COGNIT
platform, included in the COGNITrontend lient’s (see SR1.1 of this component) private API
there is an specific method that allows the whole Device Client to be authenticated to the
platform.

Furthermore, in the state machine implemented on this version, there are mechanisms to
ensure all time that the Device Client is authenticated, and otherwise make sure that it
tries to authenticate before performing any other action towards the COGNIT platform.

API & interfaces

Method Description Arguments Return Type

Token formatted in
HTTPBasicAuth with String.

_authentic | Authenticates against COGNIT username and

ate Frontend password gathered Returns None
: from the configuration | (nothingin Python)in
File. case of errorin

authentication.

Table 1.8. Authentication APl with single method

Device Client usage example:

from cognit import device_runtime

def sum(a: int, b: int):
print("This is a test")
return a + b

def multiply(a: int, b: int):
print("This is a test")
return a * b

Version 1.0 11 November 2024 Page 16 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

TEST_REQS_INIT = {
"FLAVOUR": "Energy",
"MAX_FUNCTION_EXECUTION_TIME": 2.0,
"MAX_LATENCY": 25,
"MIN_ENERGY_RENEWABLE_USAGE": 85,
"GEOLOCATION": "IKERLAN ARRASATE/MONDRAGON 20500"

Other requirements used

TEST_REQS_NEW = {
"FLAVOUR": "SmartCity",
"MAX_FUNCTION_EXECUTION_TIME": 3.0,
"MAX_LATENCY": 45,
"MIN_ENERGY_RENEWABLE_USAGE": 75,
"GEOLOCATION": "IKERLAN ARRASATE/MONDRAGON 20500"

try:
Instantiate a device Device Runtime
my_device_runtime =
device runtime.DeviceRuntime("./examples/cognit-template.yml™)
Send requirements to
my_device runtime.init(TEST_REQS_INIT)
Offload and execute sum function
return_code, result = my_device_runtime.call(sum, 1, 3)
print("Status code: " + str(return_code))
print("Sum result: " + str(result))
It 1s also possible to update the requirements
when offloading a function or calling again the 1init function
Equivalent: my device runtime.call(multiply, 2, 3,
new_reqs=TEST_REQS NEW)
my_device_runtime.init(TEST_REQS_NEW)
return_code, result = my _device_runtime.call(multiply, 2, 3)
print("Status code: " + str(return_code))
print("Multiply result: " + str(result))
Lets offload a function with wrong parameters
return_code, result = my device runtime.call(multiply,
"wrong_parameter", 3)
print("Status code: " + str(return_code))
print("Multiply result: " + str(result))

except Exception as e:
print("An exception has occurred: " + str(e))
exit(-1)

Version 1.0 11 November 2024 Page 17 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

2. COGNIT Frontend

2.1 [SR2.1] COGNIT Frontend

Description

The COGNIT Frontend is a software component that acts as the single point of contact for
any Application Device Runtime that requests access to the COGNIT Framework to offload
computation through the FaaS paradigm. As stated in the D2.4 Framework architecture
document, requirement SR2.1 is satisfied by this component.

This is a new component needed in the revised v2.0 of the architecture used in this
development cycle.

Data Model

This component needs to handle different abstractions to serve as the interface between
the Device Runtime and the other components of the COGNIT stack. Therefore the data
model needs to capture the different components that it needs to interact with.

e The Application Requirements object represents all the requirements by the
application running in the Device Client: fFlavour of the Serverless Runtime, latency
requirements, energy consumption, capacity,etc. A full schema of this object can be
seen in Figure 2.1. This information is persisted in the Cloud-Edge Manager
document pool.

e The Function object represents the function to be offloaded to the Serverless
Runtime. It contains the language where the function is written as well as the
function itself, encoded and hashed. A full schema can be seen in Figure 2.2. This
information is persisted in the Cloud-Edge Manager document pool.

e The Assigned Edge Cluster Frontend object represents a Cloud-Edge Manager
cluster. It contains information regarding the infrastructure that belongs to the
cluster, like networking, hypervisor hosts and datastores, as well as the Endpoint
where the Edge Cluster Frontend is running. A full schema describing the cluster is
borrowed from OpenNebula.

{
"Sschema": "http://json-schema.org/draft-07/schema#",

"type": "object",
"properties”: {
"FLAVOUR" : {

"type": "string",

"default": "Nature",

"description"”: "String describing the flavour of the Runtime. There
is one identifier per DaaS and FaaS corresponding to the different use
cases”

}
"MAX_LATENCY": {
"type": ["integer", "null"],

Version 1.0 11 November 2024 Page 18 of 41

https://docs.opennebula.io/6.10/integration_and_development/system_interfaces/api.html#documents
https://docs.opennebula.io/6.10/integration_and_development/system_interfaces/api.html#documents
https://docs.opennebula.io/6.10/integration_and_development/system_interfaces/api.html#documents
https://github.com/OpenNebula/one/blob/master/share/doc/xsd/cluster.xsd

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

"default": 10,
"description"”: "Maximum latency in milliseconds"
}
"MAX_FUNCTION_EXECUTION_TIME": {
"type": ["number", "null"],
"default": 1.0,
"description”: "Max execution time allowed for the function to
execute"
}.
"MIN_ENERGY_RENEWABLE_USAGE" : {
"type": ["integer", "null"],
"default": 80,
"description”: "Minimum energy renewable percentage"
}
"GEOLOCATION": {
"type": ["string", "null"],
"default": null,
"description"”: "Scheduling policy that applies to the requirement"
}
}
"required": ["FLAVOUR"],
"additionalProperties": false,
"ifr A
"properties”: {
"MAX_LATENCY": {
"type": "integer",
"not": {"const": 10}
}
}.
"required": ["MAX_LATENCY"]
}
“then": {
"required": ["GEOLOCATION"]
}
}

Figure 2.1. Application Requirements Object Description

=> Function object:

"Sschema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {

"LANG": {

"type": "string",

"enum": ["PY", "C"],

"description”: "Programming Language of the function"
}I

Version 1.0 11 November 2024 Page 19 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

"FC": A
"type": "string",
"description"”: "Function bytes serialized and encoded in base64"
+
"FC_HASH": {
"type": "string",
"description”: "Function contents hash. Acts as a function ID."
}
},
"required": ["LANG", "FC", "FC_HASH"],
"additionalProperties": false
}

Figure 2.2. Function Object Description

The COGNIT Frontend runs as a service, exposing a REST interface. This service, as well as
other aspects of the behaviour of the whole component, can be configured using a YAML
file (/fetc/cognit-frontend.conf) described in Table 2.1.

Attribute Value

host IP to which the COGNIT Frontend will bind to
listen for incoming requests.

port Port to which the COGNIT Frontend will bind to
listen for incoming requests. Defaults to 1338.

one_xmlrpc OpenNebula daemon contact information.

di_orchestrator_endpoint Al-Enabled Orchestrator endpoint.

log_level uvicorn logging level.

Table 2.1. COGNIT Frontend Server Configuration File

Architecture

The COGNIT Frontend features five different submodules. The high level view of the
architecture, laying out these submodules, is depicted on Figure 2.3.

e REST API module. This module is in charge of the secure communication between
the Device Clients and the COGNIT Front-end, which is the entry point for all the
functionality offered by the COGNIT stack.

e Auth Manager. This module handles the Biscuit Token based authentication used in
COGNIT. It is responsible for issuing and verifying the tokens, as well as exposing
the public key for other COGNIT components for them to verify tokens.

Version 1.0 11 November 2024 Page 20 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

e Al-Enabled Orchestrator Client. Interface for communicating with the Al-Enabled
orchestrator API.

e Application Requirements Handler. Takes care of the different management of
Application Requirements CRUD operations as OpenNebula documents.

e Function Handler. Takes care of the different management of Function CRUD
operations as OpenNebula documents.

e Cloud-Edge Manager Client. Logic built on top of the python OpenNebula client,
abstracting some of authentication, document management logic and general API

Call handling.
Auth Manager Al Orch Client €= Al Orchestrator
[]
@¢==)» RESTAPI

App Requirement

Handler Function Handler

Device Client

Cloud Edge Manager Client

!

Cloud-Edge Manager

Figure 2.3. COGNIT Frontend High Level Architecture

API & Interfaces

The APl exposed by the COGNIT Frontend is a REST API that defines the interface from a
given Device Client to consume the functionality exposed by the COGNIT stack. This APl is
specified in Table 2.2. The authorization is based on Biscuit public cryptography.

Action Verb Endpoint Request Body Response
Authenticate . . Status code 201 (Created)
to COGNIT POST /vi/authenticate ¢nds credentialsviaHTTP Ly ' oooted Biscuit

basic auth
Frontend token
Get token . JSON representation of Status code 200 (OK)
public key GET v1/public_key the public key with the public key string

Version 1.0 11 November 2024 Page 21 of 41

https://www.biscuitsec.org/

SovereignEdge.Cognit=101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

JSON representation of

Upload /v1/app_require requirements’ object Status code 200 (OK)
application POST PP_req quiremen) with the created app
. ments (with Biscuit token in the .
requirements header) requirements ID
Update JSON representation of
a b lication PUT /v1/app_require requirements’ object Status code 200
r:puirements ments/{id} (with Biscuit token in the
q header)
Get N1/app_require Status code 200 (OK)
application GET PP_req (with Biscuit token in the with the application
. ments/{id} .
requirements header) requirements document
Delete /v1/app_require
application DELETE PP_req (with Biscuit token in the Status code 204
: ments/{id}
requirements header)
Get assigned N1/app_require Status code 200 (OK)
Edge Cluster GET mentzzrd}/ic e (with Biscuit token in the with the Edge Cluster
Object - header) OpenNebula object
JSON representation of
Upload function and/or global user
functions and data to upload Status code 200 (OK)
global user POST /v1/daas/upload with the Ffile ID object.
ata wi iscuit token in the
dat (with Biscuit token in th
header)
S/(;i taneg(lje D GET /v1/daas/exist_fi Status code 200 (OK)
o le/{File_id} with the File ID object.
Efilsetitﬁ file DELETE /v1/daas/del_file Status code 204 (No
D g /{file_id} Content) if successful.
Table 2.2. COGNIT Frontend API Specification
Authorization

The COGNIT Frontend is a stateless component. All authorization from the Device Client is
delegated to the Cloud-Edge Manager, which validates using biscuit as an authorization
backend. This implies that Device Clients must have access to a user credential that is valid
in the Cloud-Edge Manager in order to interact with the COGNIT Frontend.

After the Device Client authenticates with an existing user credential, a token is issued to
it as a response to the authentication call. Further requests on other COGNIT components
serving the device client are authorised with this token. The legitimacy of the token can be
verified with the public key that the COGNIT Frontend shares. This key has a counterpart

Version 1.0 11 November 2024 Page 22 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

private key that is used to generate the tokens, which is only known by the COGNIT
Frontend and is regenerated every time the COGNIT Frontend starts.

Documentation

Two guides are available to install, configure and operate a COGNIT Frontend:

e The Administrator Guide covers the installation of the component, including
instructions to install dependencies. It will also cover the configuration of the
service, mostly by means of the provisioning-engine.conf configuration file, to
configure the server and also the connection with the Cloud-Edge Manager. Hints
and best practices for the management of the service will also be available for
administrators in the guide.

e The User Guide covers the use of the COGNIT Frontend by the Device Client. It will
state all the needed information that the Device Client must know, like the COGNIT
Frontend endpoint and the Cloud-Edge Manager credentials.

Version 1.0 11 November 2024 Page 23 of 41

https://github.com/SovereignEdgeEU-COGNIT/cognit-frontend?tab=readme-ov-file#install
https://github.com/SovereignEdgeEU-COGNIT/cognit-frontend?tab=readme-ov-file#use

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

3. Edge Cluster

3.1 [SR3.1] Edge Cluster Frontend

Description

The Edge Cluster Frontend is the entrypoint for offloading functions from the Device
Client in each Edge Cluster. It acts as a load balancer, to handle the redirection to the
correct Serverless Runtime running within the particular Edge Cluster. As stated in the
D2.4 Framework architecture document, requirement SR3.1 is satisfied by this component.

Architecture

The Edge Cluster Frontend key functionality is to proxy the connection from the Device
Clients to a particular Serverless Runtime running in the Cloud-Edge Manager Edge Cluster
to which the Edge Cluster Frontend is binded to. Its main goal will be coherently load
balancing the requests that the Frontend of this particular Edge Cluster is receiving. This
load balancing is based on CPU usage. Functions are offloaded to the Serverless Runtimes
with the lowest CPU usage, provided they have the appropriate flavour.

The Edge Cluster Frontend architecture is depicted in Figure 3.1, featuring the following
modules:

e REST API: REST API module. This module is in charge of the secure communication
between the Device Clients and the COGNIT Edge Cluster Front-end, which is the
entry point for offloading function executions.

e Auth Manager. This module is responsible for acquiring the public key for token
verification purposes from the COGNIT Frontend, and verifying the tokens issued
by the device client in the requests.

e Execution Handler. Responsible for the execution of a function according to the
specifications of the device client. Offloads the execution to a given Serverless
Runtime.

e Load Balancer. Selects the ideal Serverless Runtime out of the Serverless Runtime
VMs running on the Edge Cluster for which the COGNIT Edge Cluster Frontend is
responsible for.

Version 1.0 11 November 2024 Page 24 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

ﬁSR

Auth Manager
()
Load Balancer —e SR
&=» RESTAPI

Execution

Handler
Device Client - SR

Cloud Edge Manager Client
Cloud-Edge Manager
Figure 3.1. Edge Cluster Frontend High Level Architecture
Data Model

This component handles the Function Parameters as input in the request body, as a list of

strings containing the serialised parameters by each device runtime. Other parameters
admitted are expected as path parameters:

e Function ID (an Integer): Document ID of a Function previously uploaded to the
Cloud-Edge Manager document pool using the COGNIT Frontend.

e Execution Mode (Enum, can be async or sync): On sync mode, the execution result

will be returned to the device client as soon as it finishes, as a response to the
execution request. On async mode, an execution id is returned on the response,
and the execution is performed on the Serverless Runtime. The status of the
execution can then be queried afterwards.

e App Requirement ID (an Integer): Document ID of an Application Requirement

previously uploaded to the Cloud-Edge Manager document pool using the COGNIT

Frontend.

Version 1.0 11 November 2024 Page 25 of 41

SovereignEdge.Cognit-101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

The Edge Cluster Frontend runs as a service, exposing a REST interface. This service, as
well as other aspects of the behaviour of the whole component, can be configured using a
YAML file (/etc/cognit-edge_cluster_frontend.conf) described in Table 3.1.

Attribute Value

host IP to which the COGNIT Frontend will bind to listen for
incoming requests.

port Port to which the COGNIT Frontend will bind to listen for
incoming requests. Defaults to 1338.

one_xmlrpc OpenNebula daemon contact information.

oneflow OpenNebula multi VM daemon contact information.

ai_orchestrator_endpoint Al-Enabled Orchestrator endpoint.

log_level uvicorn logging level.

Table 3.1. Edge Cluster Frontend Server Configuration File

API & Interfaces

This component exhibits an API enabling the management of remote functions to be
executed in the Serverless Runtime load balanced by the Edge Cluster Frontend. Two
endpoints are exposed, to execute and add Device Client related metrics. A description of
the endpoint is provided in Tables 3.2 and 3.3, as well as an example of the execute

endpoint.

Type Description

HTTP method

POST

Query Parameters

app_reqgs_id, mode={sync|async}

HTTP Header biscuit_ token: Authorization biscuit token for performing
the action.
HTTP Request body params: A list containing the params encoded in base64

HTTP Response Code

200: Success

400: Bad request

405: Not allowed

HTTP Response body

result: Serverless Runtime response model

Table 3.2. /v1/functions/{id}/execute Edge Cluster Frontend Endpoint

Version 1.0

11 November 2024

Page 26 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Request:

POST /v1/functions/32/execute?app_req_id=28&mode=sync

{
“params”: ["gAVLAi4=", "gAVLAy4=", "gAVLBC4="]
}
Response:
{
"ret_code": 0,
"res": "gAVLGC4=",
"err": null
}

Type Description Comments
HTTP method POST Upload device client connection metrics
HTTP Request body JSON with metrics No model enforced yet, planned for the next

development cycle.

HTTP Response Code 200: Success

400: Bad request

404: Not found

Table 3.3. /v1/device_metrics Edge Cluster Frontend Endpoint

The load balancer that is done within the Edge Cluster Frontend is configurable only by the
administrator of the concerned Edge Cluster. The user will only interact with this
component through a particular Device Client.

Documentation

This component will be administered by the Edge Cluster system admin. Admin
documentation is available with contents to deploy, configure and maintain the
component.

Tests

This component features tests that cover the following Functionality:
- the biscuit public key can be gathered from the COGNIT Frontend.
- afunction can be offloaded to a Serverless Runtime.

Version 1.0 11 November 2024 Page 27 of 41

https://github.com/SovereignEdgeEU-COGNIT/edgecluster-frontend?tab=readme-ov-file#install
https://github.com/SovereignEdgeEU-COGNIT/edgecluster-frontend?tab=readme-ov-file#install
https://github.com/SovereignEdgeEU-COGNIT/edgecluster-frontend/tree/main/tests

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

3.2 [SR3.2] Secure and Trusted Serverless Runtimes

Description

In the current development cycle minor changes have been performed to this component,
however from architecture standpoint its placement has changed quite considerably.

With the inclusion of Edge Clusters concept, the Serverless Runtimes, or FaaS execution
units are being deployed in each Edge Cluster, and are managed by the Edge Cluster, which
will act as a proxy to any Device Client trying to access any resource in that particular Edge
Cluster.

The amount of Serverless Runtimes deployed in the Edge Cluster needs to be coherent
with the demand of resources on that location of the infrastructure, which will need to be
managed at the Edge Cluster level, but also at COGNIT's global management level
(COGNIT Frontend scope).

In order to be able to make decisions, Al-Enabled Orchestrator at COGNIT global level, and
Edge Cluster at Edge Cluster level need to be aware of function execution information. For
enabling this fact, the Prometheus exporter integrated in the Serverless Runtime’s code
has been enhanced to expose requirement ID (reqs_id) that belongs to the execution of
the particular function.

The metric labels provide additional information about it through the mentioned
Prometheus exporter, being:

- end_time="Mon Mar 18 11:23:13 2024", a timestamp that defines when the
function finished executing.

- func_hash="dcf7b3aafca4b048d63c5b296f76e3988e44f9592d0b732fb8e7b0ae5f2c
26¢cb", the hash of the function that defines the bytecode of the function that was
offloaded.

\7

reqs_id= Integer value that describes to which requirement ID does correspond to
the execution of the current function.

Func_type= Either "sync”or “async”depending on the type of function.
param_l_0="xx" The list of parameters’ size in bytes.

param_Ll_n="yy" The nth parameter’s size in bytes.

\ 2 2 2R

start_time="Mon Mar 18 11:23:06 2024", a timestamp that states when the
function execution started.

¥

vm_id="7548" the VM_ID identifies in which Serverless Runtime within the COGNIT
infrastructure the function was executed.

This information will be available at Edge Cluster level, and will be aggregated using
Thanos or other metric aggregator solution to have all the information of different Edge
Clusters and global or COGNIT Frontend level.

Version 1.0 11 November 2024 Page 28 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Architecture & Components

The Serverless Runtime provides a public FastAPI >REST Server that listens to FaaS
requests. As illustrated in Figure 3.2, multiple components are involved in the execution of
the task offloading function, this is the same as in the v1 of the architecture:

Serverless Runtime

Executors
FastAPI

REST Server
Python Executor

FaaS Resource
api/vifaas

C Executor

Daa$S Resource

J/ COGNIT 4

Prometheus
api/vi/daas rver
dask-based Event Serve
Loop .
]
_ SR exporte J

function execution information

Figure 3.2. Block Diagram of Serverless runtime modules.

However in the next development cycle, C Executor will be dropped, allowing executions
only through the Python Executor, and the C version of Device Client will need to be
designed to be able to use this Executor in a standardised way from any other language in
which Device Client could be developed (although in the scope of this project only C
version will be developed).

As it was in the v1 architecture, the FAST API REST Server is accessible to the user and
makes use of the functionalities given by the private APl components, which are
abstracted from the user for convenience.

Data Model

The only modification in this Data Model with respect to the earlier version, was the
addition of reqgs_id field to comply with the needs of the v2 architecture of COGNIT
(highlighted in bold letters):

Attribute Description

lang String describing the programming Base64 string.
language of the code to be
offloaded

2 https://fFastapi.tiangolo.com

Version 1.0 11 November 2024 Page 29 of 41

https://fastapi.tiangolo.com/

SovereignEdge.Cognit-101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

fc String describing the function to be | Base64 string.
offloaded coded in base64.
fc_hash Defines the hash of the function, String, with HEX characters.
which could be used as its identifier.
reqs_id Specifies which requirement ID Int
corresponds to the execution of this
function.
params Array of strings describing the in/out | Array of base64 strings.
parameters of the function coded in
base64.
result String describing the result of the String.
function to be offloaded with the
parameters given.
faas_uuid String describing the UUID of the String.
task to process asynchronously.
state String describing the execution of WORKING,
the function. READY,
FAILED.

Table 3.4. Data model showing the data structures of the Serverless Runtime.

API & Interfaces

The API of the Serverless Runtime has not changed in this development cycle.

Version 1.0

11 November 2024

Page 30 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

4. Secure and Trusted Execution of Computing Environments

Threat Model

In order to support the risk analysis, we performed a threat assessment on the framework
architecture by creating its threat model.Our work is the follow-up of the one reported in
the document named “D3.1 COGNIT FaaS Model - Scientific Report - a”, section 4 (4. Secure
and Trusted Execution of Computing Environments). In this document we take into
account the new architecture of the framework. We also adopt a more concrete and
precise perspective by relying on a new threat analysis tool.

To create a threat model we need to look at the framework and answer to the following 4
questions [Threat Modeling Manifesto]:

1. What is the framework?
2. What can go wrong?
3. What are we going to do about it?
4. Did we do a good job?
We address the questions by

1. Describing the architecture framework so that we have a good picture to produce
the threat model, see the The COGNIT Framework Architecture section.

2. Based on the knowledge of the framework, we can then try to find what can go
wrong with all the components and the flows between the components that we
identified, see the Identified Threats section.

3. The next step is to decide what we can do to either eliminate threats or to mitigate
the weaknesses they represent.

4. Lastly, review that we did not forget anything in collaboration with the team in
charge of the framework architecture.

All the information is collated in documents making up the threat model.
We decided to use a tool named Microsoft Threat Modeling Tool for several reasons:
e Drawing diagrams of an IT system is very easy.

e Each element that we place on the diagram has several properties which are used
by the tool to make an analysis and produce a list of known threats that are
relevant.

e Managing the threats, like marking them as mitigated, not applicable, etc. is
another key feature.

e |t supports updating the system definition during a project lifecycle, so that it can
update the list of threats.

e |tserves as a follow-up and threats management tool.

e It produces comprehensive reports which enables to improve communication with
all stakeholders.

Version 1.0 11 November 2024 Page 31 of 41

https://www.threatmodelingmanifesto.org/
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Threat Modelling Definition

Threat modelling First focuses on describing the system we build. As we said, we identify
all the components and the flows but we also identify trust boundaries. When a flow
comes from a component from its own "trust network" to another network, it crosses a
change of security zone, it is said to cross a trust boundary.

Once we know the system, we analyse all the elements. We try to determine the
weaknesses that can lead to threats that malicious people can exploit. Note that the
consequences related to threats can be due to errors and not attacks per se.

The process of identifying the threats can use a classification proposed by Microsoft
named STRIDE. The tool we used does analyse the system using this classification.

The table below describes what the STRIDE acronym stands for:

Threat Violates Description

S | spoofing authentication | pretending to be someone or
something else.

T | tampering integrity making changes to data.

R | repudiation non-repudiation | pretending not to have done something
when no evidence can challenge it.

| | information disclosure | confidentiality [release of secure or private/confidential
information.

D | denial of service availability attack making a service temporarily or
permanently unavailable.

E [elevation of privilege [authorisation gain elevated access to protected
resources.

Table 4.1: STRIDE Acronym Meaning

The analysis process using the STRIDE classification consists in looking at each element of
the system and checking if it is affected by one of the STRIDE threat categories.

The next step is to assess the risks of the threats being exploited and evaluate the extent
of the damage so that we can:

e change the system to remove the threat.
e change the system in a way it is mitigated.
e accept the risk, leave the system unchanged.

Each time the system is changed we need to update the analysis to reflect the new system.

Version 1.0 11 November 2024 Page 32 of 41

SovereignEdge.Cognit-101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

The COGNIT Framework Threat Model

The following diagram presents the global view of the COGNIT Framework (please refer to
the Deliverable D2.4 for the details about the COGNIT Framework Architecture).

Device Client

Device Client

Edge Boundary
"" COGNIT Privatel
T AiEnabled)
Orchestraton

T Edge Cluster [n)
COGNIT | !
Frontend

Push Metrics (Latency)

Query for the
Optimal EC

Edge Cluster
Frontend

T Serverless!
d Function A |

Al-Enabled
Orchestrator

! CE anager:

! Ma nage SR
! Lifecycle

Sernverless
Runtime

I

Push metrics

Figure 4.1: COGNIT Framework Threat Model Diagram

The above diagram presents the components and the flows (how the components

communicate with each other). At the top, we see the public network and, below the Edge
Boundary line, the internal network of the framework.

The arrows describe the data flows, the circles identify components and the dashed lines
and boxes describe trust boundaries.

The flows we identified, from the Device Client perspective, are:
1.

The COGNIT init Flow, the client needs to initiate a connection, it uses a secured
connection sending credentials as a JSON payload, the COGNIT Frontend sends
back a Biscuit token that contains encrypted data?, if the credentials are valid.

3Biscuit JWT token

Version 1.0

11 November 2024 Page 33 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

2. The Query a ECflow, the client queries for an Edge Cluster, the COGNIT Frontend
returns information about the selected edge cluster front end endpoint (ID).

3. The Upload Function flow, the Device Client sends the function it wants to offload
to a Serverless Runtime.
4. The Execute Function flow, the device triggers the function execution.

The 4 fFlows we presented cross a trust boundary from the public network to the
framework's internal network.

The internal flows are to be confirmed, therefore we do not provide any explanation about
them. We must include private zones in the threat modelling because we must consider
intrusion cases and their consequences (what attackers could exploit in such cases).

Identified Threats

To identify the threats of the framework, we introduced the architecture description in the
threat modelling tool (see screenshot below).

@l COGNIT-General-Threat-Model* - Microsoft Threat Modeling Tool

File Edit View Settings Diagram Reports Help DiagramReader

Gl R DL DXE 90 @as

COGNIT Framework X

Element Properties
Python Application
Device Client Name Device Client

Out Of Scope O

+ Reason Fer Out Of Scope
H Configurable Attributes
1 As Generic Process

Code Type Managed
Running As Standard User With Elevation

Isolation Level AppContainer

Accepts Input From Local or Network Service

Edge Boundary

" COGNIT
Frontend

Implements or Uses an
Authentication Mechanism
Implements or Uses an
COGNTP || Authorization Mechanism
Implements or Uses a
Communication Protocol

Yes

Yes

I Yes
Al-Enabled |

Orchestraton Sanitizes Input No

Sanitizes Output MNo

; Edge Cluster
: Frontend
' [Add New Custom Attribute
; grveriess|
Ruytime (i)}

Executq Function
SR() i

Al-Enabled
Orchestrator

Lifecycle

Messages - Disabled Motes - 5 entries

Figure 4.2: Microsoft Threat Modeling Tool

With this description, the tool generated a list of 134 threats. The same type of threats
affect different components of the framework. We reduced the list to 13 different threats.
This way we will see how to address them all in the same way, in the next steps.

the token is generated by the framework and encrypted using a private key

later on, all communications must contain the token

the token validation is taking place only in the private network using the public key
there is no need to share the public key with the outside world

Version 1.0 11 November 2024 Page 34 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

In the fFollowing table we show the list grouped by STRIDE category, where the threats are
about flows between two components of the framework named COGNIT component1 and
COGNIT component 2, for example COGNIT component1 could be “Device Client” and
COGNIT component 2 could be “COGNIT Frontend”:

Threat description

S | COGNIT Component 1 may be spoofed by an attacker and this may lead to
information disclosure by COGNIT Component 2. Consider using a standard
authentication mechanism to identify the destination process.

COGNIT Component 1 may be spoofed by an attacker and this may lead to
unauthorised access to COGNIT Component 2. Consider using a standard
authentication mechanism to identify the source process.

T | Attackers who can send a series of packets or messages may be able to overlap data.
For example, packet 1 may be 100 bytes starting at offset 0. Packet 2 may be 100
bytes starting at offset 25. Packet 2 will overwrite 75 bytes of packet 1. Ensure you
reassemble data before filtering it, and ensure you explicitly handle these sorts of
cases.

Data flowing across may be tampered with by an attacker. This may lead to a denial
of service attack against COGNIT Component or an elevation of privilege attack
against COGNIT Component or an information disclosure by COGNIT Component.
Failure to verify that input is as expected is a root cause of a very large number of
exploitable issues. Consider all paths and the way they handle data. Verify that all
input is verified for correctness using an approved list input validation approach.

If a dataflow contains JSON, JSON processing and hijacking threats may be
exploited.

Packets or messages without sequence numbers or timestamps can be captured and
replayed in a wide variety of ways. Implement or utilise an existing communication
protocol that supports anti-replay techniques (investigate sequence numbers before
timers) and strong integrity.

R | COGNIT Component claims that it did not receive data from a source outside the
trust boundary. Consider using logging or auditing to record the source, time, and
summary of the received data.

| | Custom authentication schemes are susceptible to common weaknesses such as
weak credential change management, credential equivalence, easily guessable
credentials, null credentials, downgrade authentication or a weak credential change
management system. Consider the impact and potential mitigations for your custom
authentication scheme.

Version 1.0 11 November 2024 Page 35 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Data flowing across may be sniffed by an attacker. Depending on what type of data
an attacker can read, it may be used to attack other parts of the system or simply be
a disclosure of information leading to compliance violations. Consider encrypting the
data flow.

D | An external agent interrupts data flowing across a trust boundary in either direction.

COGNIT Component crashes, halts, stops or runs slowly.

E | COGNIT Component 1 may be able to impersonate the context of COGNIT
Component 2 in order to gain additional privilege.

An attacker may pass data into COGNIT Component in order to change the flow of
program execution within COGNIT Component to the attacker's choosing.

Table 4.2: Grouped Possible Threats

In a threat modelling process we consider the threats of every flow. As an example here is
the list of the potential threats of Query a EC (picture hereafter).

Device Chient

COGMNIT
Frontend

Figure 4.3: The Query a ECFlow

The Query a EC flow connects the Device Client and the COGNIT Framework components.

Version 1.0 11 November 2024 Page 36 of 41

SovereignEdge.Cognit=101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

Properties for the Device
Client component.

Element Properties

Python Application
MName Device Client
Out Of Scope O

Reason For Out Of Scope

Configurable Attributes

As Generic Process

Code Type Managed

Running As Standard User With Ele
Isolation Level AppContainer
Accepts Input From Local or Network Servi

Implements or Uses an

Authentication Mechanism =
Implements or Uses an Y

Authorization Mechanism &
Implements or Uses a Y

Communication Protocol s
Sanitizes Input No
Sanitizes Output MNo

Add Mew Customn Attribute|

Figure 4.4: Device Client
Properties

Version 1.0

11 November 2024

Page 37 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Properties FOI’ the COGNIT Element Properties
Frontend component.

Python Application
MName COGNIT Frontend
Out Of Scope O

Reason For Out Of Scope

Configurable Attributes

As Generic Process

Code Type Managed

Running As Network Service
Isolation Level Low Integrity Level
Accepts Input From Local or Network Servi
Implements or Uses an Y

Authentication Mechanism | ‘=

Implements or Uses an Y

Authorization Mechanism &

Implements or Uses a Y
Communication Protocol s

Sanitizes Input No

Sanitizes Output MNo

Add Mew Customn Attribute|

Figure 4.5: COGNIT Frontend
Properties

Version 1.0 11 November 2024 Page 38 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Properties for the Query a
EC flow.

HTTPS

Mame Query a EC
Dataflow Order 3

Out Of Scope O

Reason For Out Of Scope

Configurable Attributes

Destination Authenticated | Yes

Provides Confidentiality Yes

Provides Integrity Yes
As Generic Data Flow

Physical Metwork 5G
Source Authenticated Yes
Transmits XML No
Contains Cookies Ne
SOAP Payload Ne
REST Payload Yes
R55 Payload Mo
JSON Payload Yes
Forgery Protection Mot Selected

Add Mew Customn Attribute|

Figure 4.6: Query a EC Flow
Properties

We defined the flow as being a HTTPS connection with a JSON payload (the token), then
generated the threats. The tool identified 10 threats for the flow:

| Category Threat Status

1 | Tampering Collision Attacks Not Started

2 | Tampering JavaScript Object Notation Processing Not Started

3 [Tampering Replay Attacks Not Started

4 | Repudiation Potential Data Repudiation by COGNIT Not Started
Frontend

5 | Information Disclosure | Weak Authentication Scheme Not Started

Version 1.0 11 November 2024 Page 39 of 41

SovereignEdge.Cognit-101092711

D3.3 COGNIT FaaS Model - Scientific Report - ¢

| Category Threat Status

6 | Denial Of Service Data Flow Query a EC Is Potentially Not Started
Interrupted

7 | Denial Of Service Potential Process Crash or Stop for Not Started
COGNITt Frontend

8 | Elevation Of Privilege | COGNIT Frontend May be Subject to Not Started
Elevation of Privilege Using Remote Code
Execution

9 [Elevation Of Privilege | Elevation by Changing the Execution Flow | Not Started
in COGNIT Frontend

10 | Elevation OFf Privilege | Elevation Using Impersonation Not Started

Table 4.3: Query a EC Flow Threats

The status in the table is what we can do about the threats, we did not yet work on that
aspect (see Next Steps and Observations). The status values are the following:

e Not Started.
e Need Investigation.
e Not Applicable.
e Mitigated.
Work done

We decided to use a new tool, named Microsoft Threat Modeling Tool, to assist us in the
modelling work and identified 134 possible threats.

We collaborated with the architecture team to improve and update the model of the
framework, leading to more accurate threat assessment.

Based on the information we collected about the new architecture of the COGNIT
Framework, we created a threat model necessary to point to possible threats. We did not
address the threats:

Are they confirmed?

How to mitigate or remove them?

We reduced the number of different threats to 13, because the same vulnerabilities are
present for several components of the framework.

Version 1.0

11 November 2024

Page 40 of 41

SovereignEdge.Cognit=101092711 D3.3 COGNIT FaaS Model - Scientific Report - ¢

Next Steps and Observations
Our next steps will include:

consider the threats for all the flows, set the correct status, with a justification.
schedule one or several meetings with the stakeholders so that they review,
validate and give more input about the framework to consolidate the system
description.

e schedule meetings with the people in charge of the components to review the
identified threats.
consider using other tools, such as threagile, to improve threat analysis.
Illustrate how the threats are exploited through attack flows targeting specific
assets of the cybersecurity use case such as the availability of the anomaly
detection.

Meetings with everyone involved in developing the framework are important because
everyone can provide input that is fundamental to identify vulnerabilities and threats early
on, and decide how to address them.

The process is not a one time job. Each time new components are added, components are
removed, or responsibility changes, it can impact the threats to the framework. Therefore,
the threat model must be maintained throughout the development process. As an
example, a recent change to the architecture, that the architecture team did communicate,
reduced the number of possible threats from 165 to 134.

Our current work is the starting point of the process, so we have not worked more deeply
in the analysis on the threats produced by the tool we use.

4.1 [SR6.1] Advanced Access Control

Description

In terms of authorization, as commented in the SR1.5 section on this document, in the
current development cycle the Biscuit token has been introduced, which enhances the
authorization scheme of the previous versions. This allows doing a more advanced access
control within the COGNIT framework.

4.2 [SR6.2] Confidential Computing

Description

In this development cycle we evaluated the available technologies for confidential
computing to secure the processing of data in Serverless Runtimes within the COGNIT
framework. Based on the application agonistic behaviour of Confidential Virtual Machines
(CVM) and Open Source code availability, we decided to proceed with AMD Secure
Encrypted Virtualization (AMD-SEV).

Version 1.0 11 November 2024 Page 41 of 41

https://threagile.io/

