
 A Cognitive Serverless Framework for the Cloud-Edge Continuum

 D5.10 COGNIT Framework - Demo - a
 Version 1.0

 30 April 2024

 Abstract

 COGNIT is an AI-Enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
 Continuum that enables the seamless, transparent, and trustworthy integration of data
 processing resources from providers and on-premises data centers in the cloud-edge
 continuum, and their automatic and intelligent adaptation to optimise where and how
 data is processed according to application requirements, changes in application demands
 and behaviour, and the operation of the infrastructure in terms of the main environmental
 sustainability metrics. This document provides both a demonstration of how to deploy the
 COGNIT Framework on a target infrastructure, and a demonstration of some of the
 capabilities of the COGNIT Framework using the COGNIT testbed hosted by RISE.

 Copyright © 2024 SovereignEdge.Cognit. All rights reserved.

 This project is funded by the European Union’s Horizon Europe research and innovation
 programme under Grant Agreement 101092711 – SovereignEdge.Cognit

 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
 International License.

https://cognit.sovereignedge.eu/

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Deliverable Metadata

 Project Title: A Cognitive Serverless Framework for the Cloud-Edge Continuum
 Project Acronym: SovereignEdge.Cognit
 Call: HORIZON-CL4-2022-DATA-01-02
 Grant Agreement: 101092711
 WP number and Title: WP5. Adaptive Serverless Framework Integration and Validation
 Nature: DEM: Demonstrator, Pilot, Prototype
 Dissemination Level: PU: Public
 Version: 1.0
 Contractual Date of Delivery: 31/03/2024
 Actual Date of Delivery: 30/04/2024
 Lead Author: Thomas Ohlson Timoudas (RISE)
 Authors: Antonio Álvarez (OpenNebula), Monowar Bhuyan (UMU), Simon Bonér (UMU),

 Aritz Brosa (Ikerlan), Daniel Clavijo (OpenNebula), Johan Kristiansson (RISE),
 Marco Mancini (OpenNebula), Alberto P. Martí (OpenNebula), Goiuri Peralta
 (Ikerlan), Constantino Vázquez (OpenNebula), Pavel Czerny (OpenNebula).

 Status: Submitted

 Document History

 Version Issue Date Status 1 Content and changes
 0.1 25/04/2024 Draft Initial Draft
 0.2 29/04/2024 Peer-Reviewed Reviewed Draft
 1.0 30/04/2024 Submitted Final Version

 Peer Review History

 Version Peer Review Date Reviewed By
 0.1 29/04/2024 Nikolaos Matskanis (CETIC)
 0.1 29/04/2024 Antonio Álvarez (OpenNebula)

 Summary of Changes from Previous Versions

 First Version of Deliverable D5.10

 1 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

 Version 1.0 30 April 2024 Page 2 of 20

https://cordis.europa.eu/project/id/101092711

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Executive Summary

 Deliverable D5.10 presents the demonstrations of the first release of the COGNIT
 Framework, issued in M15. It includes both a demonstration of how to deploy the COGNIT
 Framework on a target infrastructure, and a demonstration of the COGNIT Framework in
 an operational environment using the COGNIT testbed at RISE.

 The first demonstration shows how to deploy the complete COGNIT Framework on a
 target infrastructure using the OpsForge tool, which automatically integrates and deploys
 the entire COGNIT software stack. Specifically, it sets up the following COGNIT
 components: 1) The Cloud-Edge Manager, 2) the AI-Enabled Orchestrator, 3) the Serverless
 Runtime, and 4) the Provisioning Engine. As an example, this demonstration deploys the
 COGNIT Framework on public cloud resources from AWS.

 The second demonstration uses the COGNIT testbed to show some of the capabilities of
 the COGNIT Framework, considering three different scenarios:

 1) A device requests a Serverless Runtime and offloads a function.
 2) A device updates its requirements, which triggers a migration of the Serverless

 Runtime.
 3) Serverless Runtimes have to be migrated automatically due to changes in the

 underlying cloud-edge infrastructure.

 Apart from this report, the software integration process and infrastructure is further
 detailed, together with the verification of the software requirements, in Deliverable D5.3,
 and the public repositories containing the open source code for automating this
 integration and deployment process (plus its associated documentation), as well as the a
 number of toolkits developed for the Use Cases, are presented in Deliverable D5.7.

 This deliverable has been released at the end of the Second Research & Innovation Cycle
 (M15), and will be updated with incremental releases in M27 and M33.

 Version 1.0 30 April 2024 Page 3 of 20

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Table of Contents

 Abbreviations and Acronyms 5

 1. Introduction 6

 2. OpsForge Demo 7

 2.1 OpsForge Configuration 7

 2.2 COGNIT Framework Provisioning 8

 2.3 Deprovisioning of the COGNIT Framework 11

 3. COGNIT Framework DEMO 12

 3.1 Requesting a Serverless Runtime and Offloading a function 12

 3.2 Updating Requirements from the Device and Serverless Runtime Migration 15

 3.3 Migration of Serverless Runtimes due to changes in the infrastructure 17

 4. Conclusions 20

 Version 1.0 30 April 2024 Page 4 of 20

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Abbreviations and Acronyms

 AI Artificial Intelligence

 AWS Amazon Web Services

 EC2 (Amazon) Elastic Compute Cloud

 FaaS Function as a Service

 IP Internet Protocol

 VM Virtual Machine

 VPC Virtual Private Cloud

 YAML Yaml Ain’t a markup language

 Version 1.0 30 April 2024 Page 5 of 20

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 1. Introduction

 The initial version of the COGNIT Framework Demo (Deliverable D5.10), released in M15,
 includes both a demonstration of how to deploy the COGNIT Framework on a target
 infrastructure, and a demonstration of the COGNIT Framework in an operational
 environment using the COGNIT testbed.

 Section 2 contains the details of a first demonstration showing how to deploy the
 complete COGNIT Framework on a target infrastructure using the COGNIT OpsForge tool,
 which automatically integrates and deploys the entire COGNIT software stack. As an
 example, this demonstration deploys the COGNIT Framework on AWS.

 Section 3 contains the details of a second demonstration that leverages the existing
 COGNIT testbed hosted by RISE to show some of the capabilities of the COGNIT
 Framework in an operational environment. This demo covers three different scenarios:

 1) A device requests a Serverless Runtime and offloads a function.
 2) A device updates its requirements, which triggers a migration of the Serverless

 Runtime.
 3) Serverless Runtimes have to be migrated automatically due to changes in the

 underlying cloud-edge infrastructure.

 The document ends with conclusions in Section 4.

 Version 1.0 30 April 2024 Page 6 of 20

 Unset

 Unset

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 2. OpsForge Demo

 The new component cognit-opsforge allows to easily deploy the complete COGNIT
 Framework on a target infrastructure (like an on-premise data centre or a public cloud) and
 turn it into a Cognitive Serverless Framework for the Cloud-Edge Continuum.

 This demo will show how to deploy the COGNIT Framework on the AWS Public Cloud using
 OpsForge. The M15 release of OpsForge can automatically deploy and configure the
 following components on the target infrastructure:

 ● Cloud-Edge Manager (i.e. based on OpenNebula) with the Serverless Template.

 ● Provisioning Engine.

 ● AI-Enabled Orchestrator (only the initial configuration).

 Currently, OpsForge will only create the needed virtual resources to contain the
 AI-Enabled Orchestrator. During the demo we will demonstrate how to manually deploy
 the AI-Enabled Orchestrator. Later versions of the OpsForge Tool will include the
 AI-Enabled Orchestrator component in the fully automated setup.

 2.1 OpsForge Configuration

 In order to install the OpsForge, the user must first install the runtime dependencies
 needed by the tool. The user must then clone the git repository of COGNIT OpsForge
 specifying the proper version, which in this case would be release-cognit-1.0. Using the
 command line, the user should execute the commands below, which will create a copy of
 COGNIT OpsForge in the currently active directory.

 git clone https://github.com/SovereignEdgeEU-COGNIT/cognit-ops-forge.git
 –recursive
 git checkout release-cognit-1.0

 In order to run the tool, we need first to create a YAML file (for this demonstration, we call
 it aws.yaml) that contains different configuration options for the deployment, and will be
 used as input for the OpsForge tool. Since we are targeting a deployment on the AWS
 public cloud, this configuration file with contain options related to AWS, as below:

 :infra:
 :aws:
 :ec2_instance_type: t2.medium
 :volume_size: 125
 :region: "us-east-1"
 :ssh_key: "dann1"

 Version 1.0 30 April 2024 Page 7 of 20

https://github.com/SovereignEdgeEU-COGNIT/cognit-ops-forge
https://github.com/SovereignEdgeEU-COGNIT/cognit-ops-forge?tab=readme-ov-file#how-to-use

 Unset

 Unset

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 :ssh_key_path: '~/.ssh/id_rsa'
 :cognit:
 :engine:
 :port: 1337
 :version: release-cognit-1.0

 :ai_orchestrator:
 :version: release-cognit-1.0

 :cloud:
 :version: 6.8
 :ee_token: "XXXX:XXXX"
 :web_ports:
 :main: 80
 :next_gen: 443

 :extensions:
 :version: release-cognit-1.0

 All the possible parameters in the configuration file are shown in the template above. The
 only mandatory parameters to set values for are:

 1. the : region and :ssh_key in :aws in :infra, which needs to specify credentials and
 characteristics of the desired target infrastructure in AWS, and

 2. the :ee_token in :cloud in :cognit , that needs to contain a valid OpenNebula token to
 access the enterprise edition repositories.

 For the other (optional) parameters, their default values will be used if they have no values
 set. The default value for each parameter is shown in the verbose template above.

 2.2 COGNIT Framework Provisioning

 Once the configuration file has been properly set up, we can deploy the COGNIT
 Framework using the following command within the folder of the cloned github repository
 (see Section 2.1 above).

 ./opsforge deploy aws.yaml

 The OpsForge tool will perform several tasks that are described in the following. First it
 provisions the infrastructure on AWS as it is shown in the log reported below:

 Setting up infrastructure on AWS
 Infrastructure on AWS has been deployed
 Took 63.615924 seconds

 Version 1.0 30 April 2024 Page 8 of 20

 Unset

 Unset

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Opsforge creates three EC2 instances, a Virtual Private Cloud (VPC) and the networking
 configuration required by the COGNIT components to communicate with each other
 provisioned in the specified region as shown in the following image:

 Figure 2.1 : The provisioned AWS EC2 instances and the
 corresponding COGNIT components hosted there.

 After that, it configures those EC2 instances with the packages required by each
 component using the corresponding github repositories as shown in the log below:

 Installing Cloud-Edge Manager, Provisioning Engine and AI-Enabled
 Orchestrator
 Frontend and Provisioning Engine installed
 Took 439.582241 seconds

 ubuntu@ip-10-0-1-93:~$ oned --version | head -n 1
 OpenNebula 6.8.2 (7e331ab4) Enterprise Edition
 curl http://"ec2-3-93-35-232.compute-1.amazonaws.com":6969/server/version
 "1.3.3"⏎

 Once the packages have been installed, the Cloud-Edge Manager is updated with
 Serverless Runtimes Appliances for each of the use cases. At the moment, the source of 2

 these appliances is a placeholder as the procedure to automate this part has not yet been
 implemented.

 2 https://docs.opennebula.io/6.8/marketplace/appliances/index.html

 Version 1.0 30 April 2024 Page 9 of 20

https://docs.opennebula.io/6.8/marketplace/appliances/index.html

 Unset

 Unset

 Unset

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Setting up Cloud-Edge Manager for Cognit
 Frontend ready for Cognit
 Took 28.971458 seconds

 If everything goes well, the output will contain information about the infrastructure.

 Infrastructure
 {
 "cloud": "ec2-3-236-130-204.compute-1.amazonaws.com",
 "engine": "ec2-3-93-35-232.compute-1.amazonaws.com",
 "ai_orchestrator": "ec2-3-224-211-145.compute-1.amazonaws.com"

 }

 Connect to these hosts with the <ubuntu> user using the provided ssh key'
 Logs available at ./opsforge.log'

 Take a look at AWS cluster provisioning in order to setup your KVM cluster
 https://docs.opennebula.org/stable/provision_clusters/providers/aws_provider
 .html#aws-provider

 After that, take a look at the Energy Consumption extension
 https://github.com/SovereignEdgeEU-COGNIT/opennebula-extensions?tab=readme-o
 v-file#scaphandre-extension

 Once the deployment is completed, a default user (oneadmin) is available for connecting
 and using the COGNIT Framework. Furthermore, we can proceed to install the AI-Enabled
 Orchestrator that at the moment has not yet been fully integrated into the OpsForge tool.

 To manually deploy the AI-Enabled Orchestrator, the user first needs to connect with SSH
 to the EC2 instance set up by OpsForge for hosting to the AI-Enabled Orchestrator
 (Instance-ID i-689d5fcc48d3c652 in Figure 2.1) and create the following configuration file
 with environment variables:

 export LANG=en_US.UTF-8
 export LANGUAGE=en_US.UTF-8
 export LC_ALL=en_US.UTF-8
 export LC_CTYPE=UTF-8
 export TZ=Europe/Stockholm
 export ENVSERVER_VERBOSE="false" # Verbose logging
 export ENVSERVER_HOST="addr" # Address to the Database manager/envserver
 export ENVSERVER_PORT="50080" # Port for the Database manager/envserver
 export ENVSERVER_TLS="false" # TLS for the Database manager/envserver
 export ENVSERVER_DB_HOST="addr" # Address to the Timescale DB

 Version 1.0 30 April 2024 Page 10 of 20

 Unset

 Unset

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 export ENVSERVER_DB_USER="postgres" # User credentials for the Timescale DB
 export ENVSERVER_DB_PORT="5432" # Port for the Timescale DB
 export ENVSERVER_DB_PASSWORD="pass" # User credentials for the Timescale DB
 export ONED_PASS="pass" # User credentials for OneD
 export ONED_ADDR="addr" # Address to OneD
 export ML_PORT="50090" # Port for the MLServer
 export ML_HOST="mlserver" # Address to MLServer
 export ML_INSECURE="false" # TLS to MLServer

 We need to clone the AI-Enabled Orchestrator github repository
 https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator-env in the VM and then
 execute the docker compose command in the folder of the repository:

 source .env
 docker compose --file=./docker-compose-one.yml up

 2.3 Deprovisioning of the COGNIT Framework

 In order to undeploy the COGNIT Framework and free the resources, the following
 command can be used, which again should be executed in the directory where the
 configuration file (in this case aws.yaml) is located:

 ./opsforge clean
 Destroying resources infrastructure
 COGNIT deployment successfully destroyed

 In the following section we will show a demo on how to use the device client with the
 COGNIT Framework.

 Version 1.0 30 April 2024 Page 11 of 20

https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator-env

 Python

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 3. COGNIT Framework DEMO

 The COGNIT Framework demo is performed using the COGNIT Testbed that has two
 primary hosts (p02r11srv01 and p02r11srv15) within one cluster.

 In order to perform some simulation scenarios, the host p02r11srv01 has been set with the
 label “ ENERGY_RENEWABLE=YES ”, to simulate that the host is currently running on
 renewable energy. The purpose is to simulate how the COGNIT Framework handles the
 case when a device would like to use computational resources on servers powered mainly
 by renewable energy.

 In order to offload functions on hosts with the renewable energy label set to “YES”, the
 device must set the energy scheduling policy to be renewable in the configuration of the
 Serverless Runtime.

 In this demo, we consider three different scenarios for showing some capabilities of the
 COGNIT Framework as follows:

 1) Requesting a Serverless Runtime and offloading a function
 2) Update requirements from the device triggering Serverless Runtime migration
 3) Migration of Serverless Runtimes due to changes in the infrastructure

 3.1 Requesting a Serverless Runtime and Offloading a function

 This subsection demonstrates the process of requesting a Serverless Runtime and
 offloading a function from the COGNIT Device Client (Python version) to it.

 First of all the device shall create a configuration file (e.g. cognit.yml) with the endpoint
 and credentials for the COGNIT Framework deployment as below:

 endpoint: "cognit-pe" # IP of your Provisioning Engine
 port: 1337 # Port of the Provisioning Engine
 pe_usr: "oneadmin" # Provisioning Engine Username.
 pe_pwd: "oneadmin_password" # Provisioning Engine Password.
 sr_port: 8000 # Serverless Runtime port

 In this case, the endpoint was configured to point to an instance in the COGNIT Testbed,
 but in the example deployment demonstrated in Section 2, the endpoint parameter would
 have been set to “ec2-3-93-35-232.compute-1.amazonaws.com”. The parameter sr_port
 sets the port for the Serverless Runtime that will be created. The IP address of the
 Serverless Runtime will be returned to the device runtime once created.

 To create a Serverless Runtime and offload a function using python code, first we need to
 import the cognit module:

 Version 1.0 30 April 2024 Page 12 of 20

 Python

 Python

 Python

 Python

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 from cognit import (
 ServerlessRuntimeConfig,
 ServerlessRuntimeContext,
 FaaSState

)

 For demonstration purposes, let’s define the following simple function to be offloaded to
 the Serverless Runtime:

 def sum (a: int , b: int):
 return a + b

 In order to request a Serverless Runtime, a set of requirements must be instantiated and
 passed to the Provisioning Engine. In the following, the main requirement is the name of
 the flavour containing the application dependencies and libraries needed to execute the
 function. Additionally, the label “ENERGY_RENEWABLE” in the requirements, can be
 configured through the EnergySchedulingPolicy . Currently, values below 50 result in setting
 “ENERGY_RENEWABLE=NO” in the requirements while values above 50 result in
 “ENERGY_RENEWABLE=YES”. In this case, we set a requirement for
 “ENERGY_RENEWABLE=NO”, by setting the value of EnergySchedulingPolicy to 30.

 sr_conf = ServerlessRuntimeConfig()
 sr_conf.name = "Use Case Energy"
 sr_conf.faas_flavour = "Energy"
 sr_conf.scheduling_policies = [EnergySchedulingPolicy(30)]

 Once the requirements have been set, the device can proceed to create a Serverless
 Runtime using the configuration file created previously:

 cognit_sr = ServerlessRuntimeContext(config_path= "cognit.yml")
 cognit_sr.create(sr_conf)

 The AI-Enabled Orchestrator will create and place the Serverless Runtime according to the
 requirements set by the Device Client:

 Version 1.0 30 April 2024 Page 13 of 20

 Python

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Figure 3.1 : A Serverless Runtime has been just created on host p02r11srv15

 Figure 3.2 : Created Serverless Runtime info returned to the Device Runtime

 Since it will take time to create a new Serverless Runtime, the device will need to wait,
 regularly polling the Provisioning Engine, until the Serverless Runtime is ready:

 while cognit_sr.status != FaaSState.RUNNING:

 time.sleep(1)

 Figure 3.3 : Serverless Runtime is running and ready (Device Runtime perspective)

 Version 1.0 30 April 2024 Page 14 of 20

 Python

 Python

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Figure 3.4 : Serverless Runtime is running and ready (Cloud-Edge Manager perspective)

 Once the Serverless Runtime is READY, the client can offload the execution of the
 function using a synchronous call:

 result = cognit_sr.call_sync(sum , 2 , 2)

 Figure 3.5 : Result of the offloaded function (Device Client’s output in a terminal)

 3.2 Updating Requirements from the Device and Serverless Runtime Migration

 It is possible for the device to update the requirements after the Serverless Runtime has
 been created. After an update, the AI-Enabled Orchestrator can migrate the Serverless
 Runtime according to the new requirements.

 To demonstrate this mechanism, let’s update the requirements requesting a host with
 renewable energy by setting the EnergySchedulingPolicy to a value greater than 50 as in
 the following code:

 sr_conf = ServerlessRuntimeConfig()
 sr_conf.scheduling_policies = [EnergySchedulingPolicy(80)]

 Version 1.0 30 April 2024 Page 15 of 20

 Python

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 To update the requirements for the Serverless Runtime, the client then issues an update
 to the Provisioning Engine:

 cognit_sr.update(sr_conf)

 Since the energy scheduling policy has been modified from a 30% to a 80%, the
 “ENERGY_RENEWABLE” label will be set to “YES” indicating the need for a server powered
 by renewable energy, as shown below:

 Figure 3.6 : Serverless Runtime update requested by the Device Client

 This triggers the rescheduling of the Serverless Runtime by the AI-Enabled Orchestrator
 that based on the new requirements can migrate the Serverless Runtime. During the
 migration process, the Serverless Runtime will change from a RUNNING state to other
 intermediate states:

 Figure 3.7 : Change of Serverless Runtime State from the perspective of the Device Client

 Version 1.0 30 April 2024 Page 16 of 20

 Python

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Figure 3.8 : Live migration of Serverless Runtime on host p02r11srv01

 Let’s define another function to offload after the update:

 def mult(a: int , b: int):
 print ("This mult is a test")
 return a * b * a * b

 result = cognit_sr.call_sync(mult, 4 , 5)

 During the live migration the client can offload the execution of the functions without any
 disruption of the service:

 Figure 3.9 : Result of the updated offloaded function (Device Client’s terminal output)

 3.3 Migration of Serverless Runtimes due to changes in the infrastructure

 In this scenario, we assume that several Serverless Runtimes have been requested and
 scheduled. Some of them requested a host with ENERGY_RENEWABLE and are running on
 the host p02r11srv01 as shown in the following Figure.

 Version 1.0 30 April 2024 Page 17 of 20

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Figure 3.10 : Active Serverless Runtimes on the COGNIT testbed,
 four of which are on the host p02r11srv01 .

 To simulate a change in the infrastructure, the “ENERGY_RENEWABLE=YES” label is
 removed from the current host (p02r11srv01) and assigned to the other one (p02r11srv15).

 This will trigger the rescheduling of the Serverless Runtimes by the AI-Enabled
 Orchestrator that will migrate those ones that requested renewable energy from the host
 p02r11srv01 to the host p02r11srv15 as shown in the following figure.

 Figure 3.11 : The result of the changes in infrastructure: the Serverless Runtimes are in the process
 of live migration to the host p02r11srv15 that has now the label ENERGY_RENEWABLE=YES.

 Once the live migration is finished all Serverless Runtimes are in RUNNING state as shown
 in the following figure:

 Version 1.0 30 April 2024 Page 18 of 20

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 Figure 3.12 : The Serverless Runtimes have been successively
 migrated and are running on host p02r11srv15 .

 Version 1.0 30 April 2024 Page 19 of 20

 SovereignEdge.Cognit–101092711 D5.10 COGNIT Framework - Demo - a

 4. Conclusions

 This document demonstrates how to deploy the complete COGNIT Framework on a target
 infrastructure, in this case on public cloud resources by AWS, using the COGNIT OpsForge
 tool, which automatically integrates and deploys the entire COGNIT software stack.

 It further demonstrates some of the capabilities of the COGNIT Framework in an
 operational environment, using the current COGNIT testbed hosted by RISE. In this
 demonstration, we specifically considered three different scenarios:

 1) A device requests a Serverless Runtime and offloads a function.
 2) A device updates its requirements, which triggers a migration of the Serverless

 Runtime.
 3) Serverless Runtimes have to be migrated automatically due to changes in the

 underlying cloud-edge infrastructure.

 Two additional incremental versions of this demo report will be released in M27 and M33.

 Version 1.0 30 April 2024 Page 20 of 20

