
 A Cognitive Serverless Framework for the Cloud-Edge Continuum

 D4.2 COGNIT Serverless Platform -
 Scientific Report - b

 Version 1.0

 30 April 2024

 Abstract
 COGNIT is an AI-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
 Continuum that enables the seamless, transparent, and trustworthy integration of data
 processing resources from providers and on-premises data centers in the cloud-edge
 continuum, and their automatic and intelligent adaptation to optimise where and how
 data is processed according to application requirements, changes in application demands
 and behaviour, and the operation of the infrastructure in terms of the main environmental
 sustainability metrics. This document describes the research and development carried out
 in WP4 “AI-enabled Distributed Serverless Platform and Workload Orchestration” during
 the Second Research & Innovation Cycle (M10-M15), providing details on the status of a
 number of key components of the COGNIT Framework (i.e. Cloud-Edge Manager and
 AI-Enabled Orchestrator) as well as reporting the work related to supporting Energy
 Efficiency Optimization in the Multi-Provider Cloud-Edge Continuum.

 Copyright © 2023 SovereignEdge.Cognit. All rights reserved.

 This project is funded by the European Union’s Horizon Europe research and innovation
 programme under Grant Agreement 101092711 – SovereignEdge.Cognit

 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
 International License.

https://cognit.sovereignedge.eu/

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Deliverable Metadata

 Project Title: A Cognitive Serverless Framework for the Cloud-Edge Continuum
 Project Acronym: SovereignEdge.Cognit
 Call: HORIZON-CL4-2022-DATA-01-02
 Grant Agreement: 101092711
 WP number and Title: WP4. AI-enabled Distributed Serverless Platform and Workload Orchestration
 Nature: R: Report
 Dissemination Level: PU: Public
 Version: 1.0
 Contractual Date of Delivery: 31/03/2024
 Actual Date of Delivery: 30/04/2024
 Lead Author: Monowar Bhuyan (UMU) & Paul Townend (UMU)
 Authors: Malik Bouhou (CETIC), Simon Bonér (UMU), Aritz Brosa (Ikerlan), Zhou Zhou

 (UMU), Idoia de la Iglesia (Ikerlan), Sébastien Dupont (CETIC), Aitor Garciandia
 (Ikerlan), Joan Iglesias (ACISA), Tomasz Korniluk (Phoenix), Johan Kristiansson
 (RISE), Antonio Lalaguna (ACISA), Marco Mancini (OpenNebula), Alberto P. Martí
 (OpenNebula), Philippe Massonet (CETIC), Nikolaos Matskanis (CETIC), Daniel
 Olsson (RISE), Per-Olov Östberg (UMU), Goiuri Peralta (Ikerlan), Samuel Pérez
 (Ikerlan), Bruno Rodríguez (OpenNebula), Juan José Ruiz (ACISA), Kaja Swat
 (Phoenix), Thomas Ohlson Timoudas (RISE), Iván Valdés (Ikerlan), Constantino
 Vázquez (OpenNebula), David Carracedo (OpenNebula), Ignacio M. Llorente
 (OpenNebula), Victor Palma (OpenNebula), Michal Opala (OpenNebula), Pavel
 Czerny (OpenNebula), Jackub Walczak (OpenNebula).

 Status: Submitted

 Document History

 Version Issue Date Status 1 Content and changes
 0.1 23/04/2024 Draft Initial Draft
 0.2 25/04/2024 Peer-Reviewed Reviewed Draft
 1.0 30/04/2024 Submitted Final Version

 Peer Review History

 Version Peer Review Date Reviewed By
 0.1 24/04/2024 Antonio Álvarez (OpenNebula)
 0.1 25/04/2024 Goiuri Peralta (Ikerlan)

 Summary of Changes from Previous Versions

 First Version of Deliverable D4.2

 1 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

 Version 1.0 30 April 2024 Page 2 of 43

https://cordis.europa.eu/project/id/101092711

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Executive Summary

 This is the second “COGNIT Serverless Platform - Scientific Report” that has been produced
 in WP4 “AI-enabled Distributed Serverless Platform and Workload Orchestration”. It
 describes in detail the progress of the software requirements that have been active during
 the Second Research & Innovation Cycle (M10-M15) in connection with these main
 components of the COGNIT Framework:

 Cloud-Edge Manager

 ● SR4.3 Serverless Runtime Deployment:

 Deploy Serverless Runtime as Virtualized Workloads (e.g. Containers or
 VMs/microVMs) on the cloud-edge infrastructure.

 ● SR4.4 Metrics, Monitoring, Auditing:

 Edge-Clusters monitoring, Serverless Runtimes metrics collection and
 continuous security assessment.

 AI-Enabled Orchestrator

 ● SR5.1 Building Learning Model:

 Implement AI/ML model based on collected metrics from Edge Cluster entities
 and serverless runtimes deployed across the distributed cloud-edge continuum.

 ● SR5.2 Smart Deployment of Serverless Runtimes:

 Implement a Smart Workload Orchestrator (SWO) that exposes a REST API
 used by the Cloud-Edge Manager for requesting the deployment plans used for
 provisioning the Serverless Runtimes.

 ● SR5.3 Scheduling Mechanisms:

 Implement a scheduler that will place the Serverless Runtimes on the
 Edge-Clusters resources according to the deployment plan provided by the
 AI-Enabled Orchestrator.

 This deliverable has been released at the end of the Second Research & Innovation Cycle
 (M15), and will be updated with incremental releases at the end of each research and
 innovation cycle in M21, M27, and M33.

 Version 1.0 30 April 2024 Page 3 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Table of Contents

 Abbreviations and Acronyms 5

 1. Cloud-Edge Manager 6

 [SR4.3] Serverless Runtime Deployment 6

 [SR4.4] Metrics, Monitoring, Auditing 9

 2. AI-Enabled Orchestrator 13

 [SR5.1] Building Learning Models 13

 [SR5.2] Smart Deployment of Serverless Runtimes 21

 [SR5.3] Scheduling Mechanisms 36

 3. Energy-efficiency optimization and sustainability 37

 4. Conclusions and future work 40

 References 42

 Version 1.0 30 April 2024 Page 4 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Abbreviations and Acronyms

 AE Auto Encoder

 AI Artificial Intelligence

 AI-O AI-Enabled Orchestrator

 API Application Programming Interface

 CPCA Common Principal Component Analysis

 DB Database

 DL Deep Learning

 FaaS Function as a Service

 GPU Graphics Processing Unit

 HTTP Hypertext Transfer Protocol

 IDEC Improved Deep Embedded Clustering

 IP Internet Protocol

 JSON Javascript Object Notation

 LSTM Long Short-Term Memory

 ML Machine Learning

 MSE Mean Squared Error

 MTS Multivariate Time Series

 OS Operating System

 QoS Quality of Service

 RAPL Running Average Power Limit

 REST Representational State Transfer

 SLA Service Level Agreement

 SLO Service Level Objective

 SVD Single Value Decomposition

 VM Virtual Machine

 Version 1.0 30 April 2024 Page 5 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 1. Cloud-Edge Manager

 The Cloud-Edge Manager is responsible for managing the cloud-edge continuum
 infrastructure and performing actions to manage the lifecycle of the different Serverless
 Runtimes, collecting their metrics and monitoring the infrastructure resources they use.

 The main responsibilities of the Cloud-Edge Manager are, thus:

 ● Exposing through an API the operations for managing the cloud-edge continuum
 infrastructure (i.e., physical computational hosts, networks and storages across
 multi-cloud providers and edge locations) and managing the Serverless Runtimes,
 used by Device Client to offload functions.

 ● Monitoring both the cloud-edge infrastructure and the Serverless Runtimes to
 provide the AI-Enabled Orchestrator with information to implement automatic and
 intelligent adaptation for the placement of the Serverless Runtimes.

 ● Providing authentication and authorization mechanisms for accessing and securing
 resources such as physical hosts, virtual resources, networks, services, etc.

 In this second development cycle the main work performed in the Cloud-Edge Manager
 relates to the deployment of the Serverless Runtime, with provided guides and improved
 mechanisms to report readiness of the service and addition of different metrics to aid in
 the intelligent orchestration of resources.

 [SR4.3] Serverless Runtime Deployment

 Description

 As introduced in D4.1, Serverless Runtimes are modelled in the Cloud-Edge Manager as an
 OpenNebula OneFlow service, which in turn is composed of OpenNebula VM Templates
 and Images.

 A Serverless Update guide was created and distributed to support the need of the 2

 different use cases defining their own Serverless Runtime flavours, with specific software
 libraries related to their specific applications. The guide explains the actions necessary to
 either update an existing Serverless Runtime, or to clone an existing one and update the
 new copy.

 The Serverless Runtime deployment relies on the OpenNebula contextualization
 mechanism. OpenNebula contextualization is the process by which a virtual machine (VM)
 can be dynamically configured and customised during its instantiation or runtime within an
 OpenNebula cloud environment. Contextualization allows administrators to automate the
 configuration of VMs, ensuring that they meet specific requirements and are properly
 integrated into the cloud environment. This mechanism is used in the Serverless Runtime
 deployment procedure to implement a number of functionalities:

 2 https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime/wiki/How-to-update-sr-template-image

 Version 1.0 30 April 2024 Page 6 of 43

https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime/wiki/How-to-update-sr-template-image

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 ● Start of the Serverless Runtime service within the Virtual Machine. This is achieved
 using existing functionality that triggers scripts at boot time. A script was 3

 developed to perform a series of automated steps:
 ○ clone the COGNIT Serverless Runtime repository. 4

 ○ install dependencies of the Serverless Runtime service.
 ○ optionally, install flavour specific dependencies.
 ○ launch the Serverless Runtime service.

 ● The existing OpenNebula OneGate component is used to push information about 5

 the VM having finished its boot procedure, setting a custom attribute (READY=yes)
 to the VM metadata, allowing the Provisioning Engine to report the Serverless
 Runtime as ready when this attribute is found. This is performed if a Virtual
 Machine metadata contains the REPORT_READY attribute. When set to YES, the
 OpenNebula contextualization packages (that are executed in the guest OS as part
 of its boot process) will report the VM to be READY to the OneGate client. This is
 useful for the OpenNebula OneFlow service to determine when a VM is in running
 state as the VM might be running from the perspective of the hypervisor, but still
 booting and or configuring important services, like the one-context daemon.

 This existing feature showed a critical limitation in the COGNIT execution model. Having
 the READY=yes attribute in a Virtual Machine metadata means that the VM has been
 booted, however, it does NOT imply that the Serverless Runtime service is running. Hence,
 a high failure rate was detected from the Device Client at the time of offloading the first
 function, as usually the Serverless Runtime service takes time to be launched that needs to
 be accounted for. Therefore, an extension of the existing contextualization mechanism in
 OpenNebula has been implemented in this second cycle, to answer the need of the
 Provisioning Engine to report the Serverless Runtime as running when the Serverless
 Runtime Application initialization is finished.

 Data model

 Two new attributes (see Table 1.1) were added in the OpenNebula contextualization
 mechanism, contributed upstream. The contextualization mechanism checks if these
 attributes are defined in the VM metadata and acts according to its values.

 Attribute Name Description

 READY_SCRIPT

 When the variable is defined, the REPORT_READY
 functionality will only be used after the contents of the
 variable are successfully executed. It is useful to customise
 your appliance readiness. For example READY_SCRIPT="nc
 -vz localhost 8000" will only return 0 if the port 8000 is up.

 5 https://docs.opennebula.io/6.8/management_and_operations/multivm_service_management/onegate_usage.html

 4 https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime

 3 https://docs.opennebula.io/6.8/management_and_operations/references/template.html#context-section

 Version 1.0 30 April 2024 Page 7 of 43

https://docs.opennebula.io/6.8/management_and_operations/multivm_service_management/onegate_usage.html
https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime
https://docs.opennebula.io/6.8/management_and_operations/references/template.html#context-section

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 READY_SCRIPT_PATH

 Similar to READY_SCRIPT but the script exists in the Guest
 filesystem and its path is what needs to be defined on the
 CONTEXT section. For example
 READY_SCRIPT_PATH=/usr/bin/echo.

 Table 1.1: New contextualization attributes

 This functionality is now being used on the Serverless Runtimes VM Templates to check if
 the Serverless Runtime Application running inside the VM has bound its port.

 Version 1.0 30 April 2024 Page 8 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 [SR4.4] Metrics, Monitoring, Auditing

 Extensive work was carried out in this second development cycle to enrich the monitoring
 attributes gathered by OpenNebula and Prometheus in order to support the different
 scheduling decisions made by the AI-Enabled Orchestrator component. We will present
 the work grouped by the type of metric to be measured.

 COGNIT Specific Metrics

 As presented in D3.2 under the “[SR2.1] Secure and Trusted FaaS Runtimes section”, the
 Serverless Runtime service exhibits a Prometheus Exporter, running by default on port
 9100.

 A new attribute is now available in the VM metadata, as seen in Table 1.2.

 Attribute Name Description

 PROMETHEUS_EXPORTER

 Prometheus exporter port. This is used by the
 OpenNebula Prometheus integration to scrap the
 Prometheus exporter running on the VM guest OS.

 Table 1.2 : New VM metadata attribute for COGNIT integration with Prometheus

 If this attribute is defined, then the OpenNebula frontend will automatically add those
 VMs as scrapping targets of the Prometheus server running in the frontend. This is
 achieved by extending the current Prometheus integration, which relies on a datasource
 patch script which takes care of updating the Prometheus configuration file that holds the
 targets to scrap. In other words, it updates the Prometheus scraping endpoints (ie, what
 Prometheus can inspect to extract metrics) and that needs to be run manually. In a
 production OpenNebula deployment this is not a significant problem since the integration
 only covers hypervisor exporter scrapping rather than per VM exporter scrapping. Adding
 a hypervisor node to an OpenNebula cloud is a much more static and rare operation than
 creating a new VM, so in the context of the COGNIT project a more dynamic approach is
 needed, as it is not realistic to rely on manual update of the Prometheus datasources.

 As part of the development of this functionality of dynamic scrapping endpoints for the
 OpenNebula Prometheus integration, two OpenNebula hooks were created (hooks are 6

 scripts that can be associated with any resource state change or API call in OpenNebula), a
 VM state hook and a HOST state hook. Both hooks are intended to automatically run the
 data sources patch script every time a VM reaches the RUNNING state and a HOST reaches
 the MONITORED state.

 6 https://docs.opennebula.io/6.8/integration_and_development/system_interfaces/hook_driver.html#overview

 Version 1.0 30 April 2024 Page 9 of 43

https://docs.opennebula.io/6.8/integration_and_development/system_interfaces/hook_driver.html#overview
https://docs.opennebula.io/6.8/integration_and_development/system_interfaces/hook_driver.html#overview

 Python

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 The default patch data sources are also modified to include the addition of this new type
 of exporter. An excerpt of the config file can be found on Figure 1.1 , showcasing IPv6 and
 IPv4 targets.

 - job_name: sr_exporter
 static_configs:
 - targets:
 - "[2001:67c:22b8:1::11]:9100"
 labels:
 vm_id: '1329'

 - targets:
 - "[2001:67c:22b8:1::7]:8787"
 labels:
 vm_id: '1323'

 - targets:
 - "[2001:67c:22b8:1::9]:8787"
 labels:
 vm_id: '1320'

 - targets:
 - "[2001:67c:22b8:1::8]:8787"
 labels:
 vm_id: '1317'

 Figure 1.1 Prometheus Scrapper Configuration File

 This new mechanism has been deployed on the COGNIT testbed and activated to the VM
 Template backing each of the use cases Serverless Runtime flavours.

 Energy Metrics for Virtual Machines

 As a continuation of the work done in the first development cycle and presented in D4.1,
 the Scaphandre integration in OpenNebula has been extended to allow for VM energy
 metric extraction, as well as the already performed hypervisor energetic metrics
 extraction.

 Scaphandre is a metrology agent dedicated to electrical power consumption metrics. The 7

 goal of the project is to permit any company or individual to measure the power
 consumption of its tech services and get this data in a convenient form, sending it through
 any monitoring or data analysis toolchain.

 As part of its integration with OpenNebula, a Scaphandre agent is installed on each
 hypervisor host, which is in charge of collecting the consumption metrics. Using the
 Prometheus exporter provided by Scaphandre, the metrics are exported and stored in
 Prometheus and can be later queried from Grafana. Scaphandre gathers an estimation for
 the power consumption for each process in a physical machine using the CPU RAPL 8

 extensions. A high level view of the configuration is presented in Figure 1.2 .

 8 https://hubblo-org.github.io/scaphandre-documentation/compatibility.html#checking-rapl-is-available-on-your-cpu

 7 https://github.com/hubblo-org/scaphandre

 Version 1.0 30 April 2024 Page 10 of 43

https://hubblo-org.github.io/scaphandre-documentation/compatibility.html#checking-rapl-is-available-on-your-cpu
https://github.com/hubblo-org/scaphandre

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Figure 1.2. OpenNebula Scaphandre Integration enabling VM metric gathering

 The power metrics per-VM are computed strictly for each VM. That was accomplished after
 filtering the power consumption per process reports for the host running every VM via
 Scaphandre. Scaphandre provides an estimation of the power consumption per each
 process of the host, accessing to the Linux powercap devices (RAPL extensions) on the
 physical host. As each VM is a process, power used for each one of them can be isolated.

 Intel and AMD processors have been introducing extensions that compute RAPL (Running
 average power limit) for most of its processors. These extensions account the CPU time as
 per the frequency that each computing domain uses (being a domain a set of physical
 resources) and compute a good estimation of the amount of energy that it has been using.
 The drawback of this approach is the need for relatively new CPUs and operating systems.
 For instance, in order to access this power capability extensions on Ryzen processors a 9

 recent Linux kernel (greater than 6.0) is needed.

 Scaphandre correlates the resource usage per each process with the RAPL data, thus
 allowing us to have a good estimation for the power consumption of each process. Every
 VM running on a host is an independent process, so this estimation can be considered the
 power consumption for every VM isolating its Scaphandre metrics for power usage (in
 microWatts). These measurements reflect only CPU/memory/internal GPU power
 consumption and are not adding GPU power to it.

 9 https://www.amd.com/en/products/processors/desktops/ryzen.html

 Version 1.0 30 April 2024 Page 11 of 43

https://www.amd.com/en/products/processors/desktops/ryzen.html

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Scaphandre offers an integration with Prometheus so the energy metrics are available for
 consumption to the AI-Enabled Orchestrator through the Prometheus integration.

 Geolocation Metrics

 A key problem that the COGNIT project aims to give a solution for is delivering low latency
 function offloading. For this to be optimally solved, metrics on geolocation need to be
 provided to the AI-Enabled Orchestrator so it can infer latency in the relevant points of the
 continuum for the particular cloud infrastructure where the COGNIT framework is
 deployed.

 With this extension, every hypervisor host with a public IP address has a GEOLOCATION
 attribute added to their OpenNebula metadata. This will hold a space separated list of
 coordinates in the form of `latitude,longitude` corresponding to the geographic location
 of the public IP address. The open source project geocoder is leveraged to obtain this 10

 information.

 An OpenNebula hook has been developed that can be tied to changes of state in the
 OpenNebula hosts. Every time a host enters the MONITORED state, which should be the
 end result of adding a host, the attribute `GEOLOCATION` should appear in the host
 template. This effectively implements the integration since there is no need for periodic
 refreshments of this metric as hypervisor hosts have a static location. This information is
 available to the AI-Enabled Orchestrator through the OpenNebula API.

 10 https://github.com/alexreisner/geocoder

 Version 1.0 30 April 2024 Page 12 of 43

https://github.com/alexreisner/geocoder

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 2. AI-Enabled Orchestrator

 The AI-Enabled Orchestrator (AI-O) is the heart of the serverless platform that enables
 multiple features, including:

 ● optimal placement of serverless runtimes,
 ● dynamic migration of applications while changing application requirements, and
 ● optimal resource utilisation in the cloud-edge continuum proactive migration.

 For example, while changing energy usage of an individual cluster according to the energy
 and sustainability metrics collected by the cloud-edge manager. The AI-O will employ
 multi-objective optimization to concurrently evaluate the multiple objectives
 simultaneously from device clients to offloading applications to clusters in the cloud-edge
 continuum. This will ensure conflicting goals maximising performance while minimising
 cost, running on green clusters whenever available, and being well-balanced. The main
 focus of this version of the implementation has been on preliminary research, such as
 implementing learning models and the end-to-end integration of its subcomponents.

 [SR5.1] Building Learning Models

 Description

 AI-Enabled Orchestrator is key in COGNIT Framework, where AI/ML models are developed
 to address multiple downstream tasks within the orchestrator, such as characterization
 and classification of workloads, prediction of workloads, optimization of resource
 utilisation, proactive migration, and energy-aware placement. The provisioning engine
 within cloud-edge manager collects both application and resource metrics that integrate
 with OpenNebula and Prometheus. The AI-Enabled Orchestrator can pull the metrics to
 train a learning model that can make smart decisions. TimeScaleDB is configured to store
 the pulled metrics from OpenNebula Prometheus. Consequently, these metrics will be the
 base for training learning models for diverse downstream orchestrator tasks. Given that
 monitored metrics lack labelling, unsupervised learning methods are adopted since each
 model can learn from data without any prior label.

 Deep learning (DL) models have been overperforming classical machine learning models in
 predicting time series data. Although, they are data hungry and expensive in computation.
 For example, Long Short-Term Memory (LSTM) networks are in the category of recurrent
 neural networks, which can capture the complex patterns and regularities in the sequence
 data [1]. Attention mechanisms can help a model to learn the important information in
 data while discarding unimportant information simultaneously [2]. Transformer models
 employ attention mechanisms extensively, which can enhance in analysing time series data
 for different downstream tasks, including prediction [3][4].

 As part of AI/ML model development, the AI-O will maintain a model repository for diverse
 downstream tasks. These models will be selected at runtime according to the downstream
 tasks. Even though, currently developing number of models for the model repository, AI-O
 employs two unsupervised learning methods: 1) Multivariate time-series clustering based
 on common principal component analysis (Mc2PCA) [5]; and 2) Improved deep embedded

 Version 1.0 30 April 2024 Page 13 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 clustering (IDEC) [6], which is an enhanced method based on the deep embedded
 clustering algorithm [7]. The Mc2PCA is a classical learning method, developed inspired by
 K-means algorithm, whereas the IDEC model is DL-based that integrates the clustering
 stage into the neural network.

 Mc2PCA

 Mc2PCA [5] is developed inspired by K-means algorithm. Precisely, this algorithm includes
 three major steps.

 1) First, assign all workload series to N clusters equally (1 < N < L), L is the amount of
 workload series.

 2) Secondly, a common projection axis S k for cluster k (1 ⩽ k ⩽ N) is constructed using
 common principal component analysis (CPCA, a variant of principal component
 analysis). Equations (1), (2) and (3) illustrate the computation required in CPCA
 algorithm. Let cluster k contain N time series, calculate covariance matrix C i for

 each time series x i , then get the common covariance matrix by averaging all C i . 𝐶
 Finally, using singular value decomposition (SVD) to decompose and reserve 11 𝐶
 first p components to get the common projection axes S k (p = 4 in the current
 implementation). Here, the CPCA algorithm applies to all clusters to obtain the
 corresponding common projection axis.

 (1) 𝐶
 𝑖

= 𝑐𝑜𝑣 𝑥
 𝑖 () = 𝐸 𝑥

 𝑖
 𝑇 𝑥

 𝑖
⎡⎢⎣

⎤⎥⎦

 (2) 𝐶 = 1
 𝑁

 𝑖 = 1

 𝑁

∑ 𝐶
 𝑖

 (3) 𝑆
 𝑘

= 𝑆𝑉𝐷 𝐶 () :, : 𝑝 ()

 3) Thirdly, project and reconstruct virtual machine workload time series x i to each
 cluster by corresponding common projection axis S k (shown in Equation 4), and
 calculate the error between x i and reconstructed input x i

 ’ (Equation 5). Then
 reassign x i to the cluster k ’ , which has the minimum error. Calculate the overall
 reconstruction error E after all samples have been reassigned (Equation 6).

 (4) 𝑥
 𝑖
 ' = 𝑥

 𝑖
 𝑆

 𝑘
 𝑆

 𝑘
 𝑇

 (5) 𝐸
 𝑖 𝑘 '

= ‖ 𝑥
 𝑖 𝑘 '
 ' − 𝑥

 𝑖
 ‖

 2

 (6) 𝐸 =
 𝑖 = 1

 𝑙

∑ 𝐸
 𝑖 𝑘 '

 11 https://en.wikipedia.org/wiki/Singular_value_decomposition

 Version 1.0 30 April 2024 Page 14 of 43

https://en.wikipedia.org/wiki/Singular_value_decomposition

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Step 2 and 3 would be iterated repeatedly until the overall reconstruction error E remains
 unchanged between two adjacent iterations. Figure 2.1 illustrates the workflow of
 Mc2PCA algorithm.

 Figure 2.1. The workflow of Mc2PCA algorithm, MTS indicates Multivariate Time Series

 IDEC

 The IDEC [6] algorithm is a deep learning-based End-to-End clustering algorithm.
 Specifically, IDEC employs classical Encoder-Decoder architecture to obtain the feature
 vector of the original workload, i.e., collected metrics as time series, and then carries out
 clustering based on feature vectors. Figure 2.2 illustrates the architecture of IDEC. The
 input data of IDEC model is a flattened tensor of multi-variant time series, all network
 layers in the encoder-decoder model are fully connected layers, while they can also be
 replaced by another kind of deep learning operator like the 1-D convolution layer.

 Figure 2.2. IDEC Architecture. z is the feature vector; x is the input workload; x’ is the
 reconstructed input.

 Version 1.0 30 April 2024 Page 15 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 The training of IDEC consists of two steps.

 1) Train encoder-decoder with single loss of reconstruction measured by Mean
 Squared Error (MSE):

 (7) 𝐿
 𝑟

=
 𝑖 = 1

 𝑛

∑ ‖ 𝑥 − 𝑥 ' ‖
 2

 2

 2) Train IDEC model with combined loss for both clustering and reconstruction (L T).

 (8) 𝑞
 𝑖𝑗

=
(1 + ∥ 𝑧

 𝑖
− 𝑢

 𝑗
‖ 2)− 1

 𝑗
∑(1 + ∥ 𝑧

 𝑖
− 𝑢

 𝑗
‖ 2)− 1

 (9) 𝑝
 𝑖𝑗

=
 𝑞

 𝑖𝑗
 2 /

 𝑖
∑ 𝑞

 𝑖𝑗

 𝑗
∑ 𝑞

 𝑖𝑗
 2 /

 𝑖
∑ 𝑞

 𝑖𝑗

 (10) 𝐿
 𝑐

= 𝐾𝐿 𝑃 ∥ 𝑄 () =
 𝑖

∑
 𝑗

∑ 𝑝
 𝑖𝑗

 𝑙𝑜𝑔
 𝑝

 𝑖𝑗

 𝑞
 𝑖𝑗

 (11) 𝐿
 𝑇

= 𝐿
 𝑟

+ 𝛾 𝐿
 𝑐

 z i is the feature vector extracted by encoder in IDEC model, u j is the clustering center of
 cluster k (0 < j < k), which is initialized by k-means algorithm. q ij is the similarity between
 feature vector z i and cluster center u j measured by student’s t-distribution. P ij is the
 auxiliary target distribution. The clustering loss L c is defined by KL
 (Kullback-Leibler)-divergence between P and Q. From Equations (8), (9) and (10), it is
 obvious that P ij is decided by q ij which demonstrates that IDEC is a self-supervised learning
 algorithm, also an unsupervised learning algorithm. In Equation (11), 𝛾 > 0 is a coefficient
 that controls the degree of distorting embedded space.

 In the inference step, the decoder part is removed, and only the encoder as well as the
 clustering layer are required.

 Data

 Both models are ready for evaluation with any of these three different data sources:
 public or benchmark dataset, testbed dataset, and emulator dataset. Here, the analysis
 and results are reported based on a public dataset.

 Public dataset: The GWA-t-12 Bitbrains dataset was used to validate the inspired models.
 It contains historical performance data of 1750 virtual machines from a distributed
 datacenter in TU Delft, which is a service provider that is specialised in managed hosting
 and business computation for enterprises. The data contains 10 metrics, namely:

 1. CPU cores: number of virtual CPU cores provisioned.
 2. CPU capacity provisioned (CPU requested): the capacity of the CPUs in terms of

 MHz, which is equal to number of cores x speed per core.

 Version 1.0 30 April 2024 Page 16 of 43

http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 3. CPU usage: in terms of MHz.
 4. CPU usage: in terms of percentage.
 5. Memory provisioned (memory requested): the capacity of the memory of the VM in

 terms of KB.
 6. Memory usage: the memory that is actively used in terms of KB.
 7. Disk read throughput: in terms of KB/s.
 8. Disk write throughput: in terms of KB/s.
 9. Network received throughput: in terms of KB/s.
 10. Network transmitted throughput: in terms of KB/s.

 Testbed data: The primary goal of the project is to deploy the developed models in the
 COGNIT Framework to validate their performance, precisely for different downstream
 tasks in the orchestrator. Device client offloads the task to serverless runtimes that needs
 to be deployed in an edge cluster according to the requirements and availability.
 Intuitively, cloud-edge manager monitors and collects data as reported in Section 1.

 Emulator data: The COGNIT testbed setup lacks diversity of deployed applications which is
 required to verify the scalability of the model and systems. So an emulator has been
 developed in parallel. However, the emulator is integrated with the COGNIT testbed. So it
 is possible to verify the developed models in both scenarios.

 Data generation using the emulator

 The purpose of the emulator (available here , see Figure 2.3) is to replicate the essential
 functionality of the COGNIT testbed to be able to deploy representative workloads to
 generate the necessary data for training and validation of the ML models for the AI-O. The
 emulated data is not exactly representative of the real environment although as it is
 generated we can easily label it, thus allowing us to quickly validate our models, enabling
 faster prototyping and debugging. It also allows us to start building models for
 yet-to-be-implemented functionality, as we can prototype different models on the
 synthetic data.

 The emulator tries to be as close as possible to the testbed while being able to emulate
 larger systems on less powerful hardware. With this in mind and also searching for a
 time-effective solution in terms of development, we chose Prometheus for monitoring, as
 the testbed uses it, thus making it more coherent and the AI-O Connector easier to
 develop. However, as the emulator SRs are implemented using containers, we decided that
 using cAdvisor to extract the SR metrics would be the easiest solution.

 Version 1.0 30 April 2024 Page 17 of 43

https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator-emulator

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Figure 2.3 : AI-O Emulator Architecture

 The applications are represented by a set of stress tests from stress-ng . This allows the 12

 creation of applications with distinct performance characteristics, simplifying the
 validation of the workload classifiers. Further validation through developing applications
 with overlapping performance characteristics thus only requires running multiple stress
 tests simultaneously. Application requests are generated from the Client Emulator
 container. This container exposes an API to start sending requests to a specified IP (an
 Emulated serverless runtimes IP).

 The Emulated SR is kept lightweight and generic, with containers providing an API for
 running stress-ng with custom parameters. The hosts for the Emulated SRs are kept as
 simple Ubuntu VMs with Docker, cAdvisor, and a host agent that exposes a simple API for
 controlling the containers. To integrate a host one needs to clone the emulator repository

 12 https://wiki.ubuntu.com/Kernel/Reference/stress-ng

 Version 1.0 30 April 2024 Page 18 of 43

https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator-emulator
https://wiki.ubuntu.com/Kernel/Reference/stress-ng

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 to the host, configure the environment variables (see .env), and then run the
 install_for_hosts.sh script .

 The Ctrl_Plane emulates the CE-M of Cognit. This component is responsible for managing
 the Emulated SRs through the hosts, as well as initiating new clients on the Client Emulator .
 To allow the AI-O to seamlessly integrate with the emulator it also replicates the interface
 between the AI-O and the CE-M. This opens up the future possibility of training
 reinforcement learning agents for the AI-O using the emulator.

 We have also partially developed the functionality to modify the network configuration
 between components to emulate a deployment across a Cloud-Edge environment using
 Traffic Control (TC). This allows us to emulate more complex network configurations than
 the COGNIT testbed can provide. However, this functionality is as of yet unfinished.

 Results

 Both inspired models are implemented based on the public dataset with 7 different
 metrics, both algorithms were trained and tested with 56049 and 14013 samples,
 respectively. The algorithms are evaluated and compared from the perspectives of
 precision and latency. For precision, Silhouette metric is employed since it can quantify
 how well a sample fits into its assigned cluster and how distinct it is from other clusters,
 the range of Silhouette Score is from -1 to 1, while a higher score demonstrates superior
 clustering precision. For latency, we compare the elapsed time of processing 1000
 samples, which can be regarded as 1000 virtual machines waiting for scheduled in the real
 application. The Silhouette Scores of Mc2PCA and IDEC algorithms are 0.029 and 0.92, and
 latency are 0.026s and 0.195s, respectively. Figures 2.4 to 2.7 illustrate the results of two
 algorithms, the feature vector’s dimensionality has been decreased to 2 by PCA for
 visualisation.

 Figure 2.4. IDEC: 0.195s, Mc2PCA: 0.026s. Figure 2.5. IDEC: 0.92, Mc2PCA: 0.029.

 Version 1.0 30 April 2024 Page 19 of 43

https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator-emulator/blob/main/Emulator/.env
https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator-emulator/blob/main/Emulator/install_for_hosts.sh
https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator-emulator/blob/main/Emulator/install_for_hosts.sh

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Figure 2.6. Clustering results of Mc2PCA. Figure 2.7. Clustering results of IDEC.

 From the current implementation and experimental analysis, IDEC model shows higher
 silhouette score than Mc2PCA, which indicates that the neural network is stronger in
 extracting features and learning without manual effort. Hence, more advanced DL-based
 algorithms will be designed and implemented as a follow-up to this and added to the
 model repository.

 Version 1.0 30 April 2024 Page 20 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 [SR5.2] Smart Deployment of Serverless Runtimes

 Description

 The AI-Enabled Orchestrator is responsible for multiple downstream tasks that include
 optimal resource utilisation, placement of serverless runtimes, dynamic migration of
 applications, and proactive migration across infrastructures. This component takes a set of
 SRs and the corresponding valid hosts and optimises the placement according to the
 selected scheduling model. This can be achieved by integrating the historical data of the
 SRs and the host data to a multi-objective optimization that schedules serverless runtimes
 and aims to optimise against resource contention and green-energy utilisation.

 Figure 2.8: Architecture of the AI-Enabled Orchestrator

 Version 1.0 30 April 2024 Page 21 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Architecture & Components

 The AI-O is decomposed into multiple subcomponents, including the database, the
 environment (env) server, and the ML server. Each component consists of multiple parts,
 see Figure 2.8. This allows for a modular design allowing individual parts to be modified,
 scaled or swapped completely without impacting the rest of the system. This is particularly
 important for the machine learning parts as we plan to provide a model repository where
 the user can choose models depending on their use-case.

 The AI-O deploys a local database that caches data from external data sources, which
 could be Emulator's prometheus service, OpenNebula prometheus, and OpenNebula core
 oned daemon. This offers the following benefits:

 ● Locally cached data, decreasing network bandwidth and latency while beneficial in
 re-training scenarios and fast scheduling decisions.

 ● Arbitrary schema enables custom metrics, e.g., asynchronous ML-based analysis, or
 pre-processing at ingestion (the Connector in Figure 2.8).

 ● Custom retention and/or aggregation policies.

 Precisely, there is a cost of duplicating data and potentially fetching unnecessary data
 from the external data sources . If that cost is substantial, this could be circumvented
 thanks to the modular design of the AI-O. The architecture abstracts data fetching at the
 Database Manager (see Figure 2.8), thus, the Connector and Database Manager could be
 changed to instead fetch certain data synchronously from the external data source.
 Although it is a relatively small change, it will not be explored in this project.

 External data sources can be any arbitrary data source. For this project, we are developing
 custom connectors for reading data from an Emulator’s Prometheus service,
 OpenNebula’s Prometheus, and oned services. Integrating against other data sources, e.g.,
 a Kubernetes cluster, or weather metrics, only requires a Connector that needs to be
 developed.

 The ML-Enabler/Daemons are non-decision-making models, primarily focused on data
 compression/extraction and forecasting. There are two types of models, first,
 asynchronous, continuously providing the most recent predictions without affecting the
 decision-making time, particularly useful for slower-executing models. Secondly, we have
 the synchronous models, lighter-weight models that are either significantly impacted by
 data staleness or unnecessary to execute at predefined intervals. For the M15 (March
 2024) deliverables, we have developed a set of classifiers, these do not make decisions but
 instead extract a compressed representation of a system's raw time series data,
 simplifying the scheduling models, see below in Schedule VMs for further information on
 their integration. Here, a VM may hold multiple serverless runtimes.

 The Scheduler/Agent models are the action-performing/state-changing models, focusing
 on optimising the Cloud-Edge continuum according to specified objectives. There are
 multiple potential optimization areas, e.g., number and location of Edge Clusters, size and
 number of hosts, VM placement within or between Edge Cluster, caching and storage,
 networking, etc. The execution latency on these models might also vary significantly, even
 with different models tackling the same problem. For example, initial VM placement

 Version 1.0 30 April 2024 Page 22 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 requests should be resolved quickly whereas optimising the VM placement through
 migrations is usually less time-sensitive. Therefore, the models are separated, simplifying
 the training and architecture of each individual model. For example, in M15 we developed
 an interference-aware scheduler, using the VM representation from the above-mentioned
 classifier, to intelligently place VMs across the edge clusters.

 Schedule VMs

 Scheduling VMs using the AI-O is an eight-step process (shown in orange in Figure 2.8).

 1. AI-O frontend receives the request for a set of SRs (serverless runtimes) and their
 corresponding valid hosts (see Deliverable D4.1 further info).

 2. Frontend forwards these as separate scheduling requests to the ML Server.
 3. ML Server forwards the request to the currently selected scheduler and classifier.
 4. Scheduler and classifier fetch historical data about the SRs and hosts from the

 Database Manager.
 5. Scheduler makes a scheduling decision based on the state of the hosts and the

 classification of the SR workload characteristics (using the currently selected
 classifier).

 6. Returning the scheduling decision from scheduler to ML server.
 7. Returning the scheduling decision from ML server to AI-O frontend.
 8. AI-O frontend waits for all SRs to be scheduled and lastly returns the scheduling

 decisions to its caller.

 Database Manager APIs

 The database manager has three API endpoints: /vms , /hosts , /metrics (shown in Table 2.1,
 Figures 2.9 - 2.15). Each of these allows retrieval and storage of corresponding data. The
 VMs and hosts tables consist of the latest metrics and state for each object. VMs have: id,
 state id, deployed status, deployed host id, CPU count and usage, available and used
 memory, disk read and writes, and finally network reads and transmits. Hosts have: id, CPU
 count and usage, available and used memory, disk read and writes, network reads and
 transmits, and finally energy usage. Metrics are time series formatted, having: id, object
 type (VM or host), CPU usage, memory usage, disk read and write, network reads and
 transmits, and finally energy usage.

 Action Verb Endpoint Request Body Response

 Get all the VMs,
 states and most
 recent metrics.

 GET /vms
 A JSON formatted
 according to Figure
 2.9 .

 Status code 200 (Success)
 if the execution was
 successful. An array
 version of JSON
 formatted according to
 Figure 2.11 .
 400 (Bad request) if there
 is any error.

 Version 1.0 30 April 2024 Page 23 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Get the VM’s state
 and most recent
 metrics (VMid
 specified in the URL).

 GET /vms/:id
 A JSON formatted
 according to Figure
 2.9 .

 Status code 200 (Success)
 if the execution was
 successful. A JSON
 formatted according to
 Figure 2.11 .
 400 (Bad request) if there
 is any error.

 Add a VM and its
 state and initial
 metrics.

 POST /vms
 A JSON formatted
 according to Figure
 2.11.

 Status code 200 (Success)
 if the execution was
 successful. A JSON
 formatted according to
 Figure 2.9 .
 400 (Bad request) if there
 is any error.

 Delete the VM (VMid
 specified in the URL).
 Note: Does not
 remove its metrics.

 DELETE /vms/:id
 A JSON formatted
 according to Figure
 2.9 .

 Status code 200 (Success)
 if the execution was
 successful. A JSON
 formatted according to
 Figure 2.9 .
 400 (Bad request) if there
 is any error.

 Update the VM’s
 host binding (VMid
 and hostid specified
 in the URL).

 PUT
 /vms/:id/:
 hostid

 A JSON formatted
 according to Figure
 2.9 .

 Status code 200 (Success)
 if the execution was
 successful. A JSON
 formatted according to
 Figure 2.10 .
 400 (Bad request) if there
 is any error.

 Delete the VM’s host
 binding (VMid and
 hostid specified in
 the URL).

 DELETE
 /vms/:id/:
 hostid

 A JSON formatted
 according to Figure
 2.9.

 Status code 200 (Success)
 if the execution was
 successful. A JSON
 formatted according to
 Figure 2.10 .
 400 (Bad request) if there
 is any error.

 Get all the Hosts,
 states and most
 recent metrics.

 GET /hosts
 A JSON formatted
 according to Figure
 2.9 .

 Status code 200 (Success)
 if the execution was
 successful. An array
 version of JSON
 formatted according to
 Figure 2.12 .
 400 (Bad request) if there
 is any error.

 Get the Host’s state
 and most recent
 metrics (Host id
 specified in the URL).

 GET /hosts/:id
 A JSON formatted
 according to Figure
 2.9 .

 Status code 200 (Success)
 if the execution was
 successful. A JSON
 formatted according to
 Figure 2.12 .
 400 (Bad request) if there
 is any error.

 Version 1.0 30 April 2024 Page 24 of 43

 Unset

 Unset

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Add a Host and its
 state and initial
 metrics.

 POST /hosts
 A JSON formatted
 according to Figure
 2.12 .

 Status code 200 (Success)
 if the execution was
 successful. A JSON
 formatted according to
 Figure 2.9 .
 400 (Bad request) if there
 is any error.

 Delete the Host
 (Host id specified in
 the URL). Note: Does
 not remove its
 metrics.

 DELETE /hosts/:id
 A JSON formatted
 according to Figure
 2.9 .

 Status code 200 (Success)
 if the execution was
 successful. A JSON
 formatted according to
 Figure 2.9 .
 400 (Bad request) if there
 is any error.

 Get the metrics of an
 object (VM or Host).

 GET /metrics
 A JSON formatted
 according to Figure
 2.13 .

 Status code 200 (Success)
 if the execution was
 successful. An array
 version of JSON
 formatted according to
 Figure 2.14 .
 400 (Bad request) if there
 is any error.

 Add metrics to an
 object (updates the
 object’s most recent
 metrics as well)

 POST /metrics
 A JSON formatted
 according to Figure
 2.15 .

 Status code 200 (Success)
 if the execution was
 successful. A JSON
 formatted according to
 Figure 2.9 .
 400 (Bad request) if there
 is any error.

 Table 2.1: API that defines the endpoints of the Database Manager

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": { },

 }

 Figure 2.9 : JSON Schema for fetching/removing objects.

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "VMID": { "type": "string" },
 "HostID": { "type": "string" },

 Version 1.0 30 April 2024 Page 25 of 43

 Unset

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 },
 "required": ["VMID", "HostID"]

 }

 Figure 2.10 : JSON Schema for setting scheduler and classifier on MLServer.

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "vmid": {
 "type": "string"

 },
 "stateid": {
 "type": "integer"

 },
 "deployed": {
 "type": "boolean"

 },
 "hostid": {
 "type": "string"

 },
 "hoststateid": {
 "type": "integer"

 },
 "total_cpu": {
 "type": "number"

 },
 "total_memory": {
 "type": "number"

 },
 "usage_cpu": {
 "type": "number"

 },
 "usage_memory": {
 "type": "number"

 },
 "disk_read": {
 "type": "number"

 },
 "disk_write": {
 "type": "number"

 },
 "netrx": {
 "type": "number"

 },
 "nettx": {
 "type": "number"

 }
 },
 "required": ["vmid", "stateid", "deployed", "hostid", "hoststateid",

 "total_cpu", "total_memory", "usage_cpu", "usage_memory", "disk_read",
 "disk_write", "netrx", "nettx"],
 }

 Figure 2.11 : JSON Schema for VM information.

 Version 1.0 30 April 2024 Page 26 of 43

 Unset

 Unset

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "hostid": {
 "type": "string"

 },
 "stateid": {
 "type": "integer"

 },
 "total_cpu": {
 "type": "number"

 },
 "total_memory": {
 "type": "number"

 },
 "usage_cpu": {
 "type": "number"

 },
 "usage_memory": {
 "type": "number"

 },
 "disk_read": {
 "type": "number"

 },
 "disk_write": {
 "type": "number"

 },
 "netrx": {
 "type": "number"

 },
 "nettx": {
 "type": "number"

 },
 "vms": {
 "type": "integer"

 },
 "energy_usage": {
 "type": "number"

 }
 },
 "required": ["hostid", "stateid", "total_cpu", "total_memory",

 "usage_cpu", "usage_memory", "disk_read", "disk_write", "netrx", "nettx",
 "vms", "energy_usage"],
 }

 Figure 2.12 : JSON Schema for Host information.

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "hostid": {
 "type": "string"

 },
 "metrictype": {

 Version 1.0 30 April 2024 Page 27 of 43

 Unset

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 "type": "integer"
 "description": "0 for host, 1 for VM"

 },
 "since": {
 "type": "integer"
 "description": "time to fetch from then until now in nanoUnixTime"

 },
 "count": {
 "type": "integer"
 "description": "max number of entries to fetch"

 }
 },
 "required": ["hostid", "metrictype", "since", "count"]

 }

 Figure 2.13 : JSON Schema for fetching metrics.

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Metric",
 "type": "object",
 "properties": {
 "timestamp": {
 "type": "string",
 "format": "date-time"

 },
 "cpu": {
 "type": "number"

 },
 "memory": {
 "type": "number"

 },
 "disk_read": {
 "type": "number"

 },
 "disk_write": {
 "type": "number"

 },
 "netrx": {
 "type": "number"

 },
 "nettx": {
 "type": "number"

 },
 "energy_usage": {
 "type": "number"

 }
 },
 "required": ["timestamp", "cpu", "memory", "disk_read", "disk_write",

 "netrx", "nettx", "energy_usage"],
 }

 Figure 2.14 : JSON Schema for metrics.

 Version 1.0 30 April 2024 Page 28 of 43

 Unset

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "id": {
 "type": "string"

 },
 "metrictype": {
 "type": "integer"
 "description": "0 for host, 1 for VM"

 },
 "timestamp": {
 "type": "string",
 "format": "date-time"

 },
 "cpu": {
 "type": "number"

 },
 "memory": {
 "type": "number"

 },
 "disk_read": {
 "type": "number"

 },
 "disk_write": {
 "type": "number"

 },
 "netrx": {
 "type": "number"

 },
 "nettx": {
 "type": "number"

 },
 "energy_usage": {
 "type": "number"

 }
 },
 "required": ["id", "metrictype","timestamp", "cpu", "memory", "disk_read",

 "disk_write", "netrx", "nettx", "energy_usage"]
 }

 Figure 2.15 : JSON Schema for adding metrics.

 AI-O Frontend Controller

 The JSON schema of the data sent and returned for communication between AI-Enabled
 Orchestrator and cloud-edge manager through an endpoint with REST API remained
 similar as reported in Deliverable D4.1 .

 AI-O ML Server

 The following examples describe JSON schemas (Figure 2.16-2.18) and attributes (shown in
 Table 2.2) of the data sent to the MLServer /place API and the expected return,
 respectively:

 Version 1.0 30 April 2024 Page 29 of 43

 Unset

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Action Verb Endpoint Request Body Response

 Request a placement
 plan for a PENDING
 Serverless Runtimes

 POST /api/place

 JSON representation
 of the VM associated
 with pending
 Serverless Runtime
 services and the list
 of viable HOSTs.

 Status code 200
 (Success) if the
 execution was
 successful. A JSON with
 information about the
 placement is returned.
 400 (Bad request) if
 there is any error.

 Set the scheduling
 model for placement
 requests.

 POST /api/scheduler
 JSON with model
 name.

 Status code 200
 (Success) if the
 execution was
 successful. A JSON with
 information about the
 placement is returned.
 400 (Bad request) if
 there is any error.

 Set the classifier
 model for estimating
 VM resource usage.

 POST /api/classifier
 JSON with model
 name.

 Status code 200
 (Success) if the
 execution was
 successful. A JSON with
 information about the
 placement is returned.
 400 (Bad request) if
 there is any error.

 Table 2.2 : Attributes between ML server and AI-O communication

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {

 "VM_ATTRIBUTES": {
 "type": "object",
 "properties": {
 "GNAME": { "type": "string" },
 "UNAME": { "type": "string" }

 },
 "required": ["GNAME", "UNAME"]

 },
 "CAPACITY": {
 "type": "object",
 "properties": {
 "CPU": { "type": "number" },
 "DISK_SIZE": { "type": "number" },
 "MEMORY": { "type": "number" }

 },
 "required": ["CPU", "DISK_SIZE", "MEMORY"]

 },
 "HOST_IDS": {
 "type": "array",
 "items": { "type": "integer" }

 },
 "ID": { "type": "integer" },

 Version 1.0 30 April 2024 Page 30 of 43

 Unset

 Unset

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 "STATE": { "type": "string" }
 },
 "required": ["HOST_IDS", "ID"]

 }

 Figure 2.16 : JSON Schema for AI-O Frontend to ML Server communication

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "ID": { "type": "integer" },
 "HOST_ID": { "type": "integer" }

 },
 "required": ["ID", "HOST_ID"]

 }

 Figure 2.17 : JSON Schema for MLServer to AI-O Frontend communication

 The following examples describe a JSON schema of the data sent to the MLServer
 /classifier and /schedule API, including descriptions of the different classifiers and
 schedulers available. Also, Table 2.3 describes the models for the workload
 characterization and Table 2.4 indicates the models for the scheduler, respectively.

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "model_name": { "type": "string" },

 },
 "required": ["model_name"]

 }

 Figure 2.18 : JSON Schema for setting scheduler and classifier on MLServer.

 Name Description
 RandomClassifier Randomly generates the for the VM. 𝑉

 𝑟
 𝑗

 DLIR Calculates the from the intermediate representation of the 𝑉
 𝑟

 𝑗

 AutoEncoder trained for IDEC.
 DLClassifier Calculates the from the distance to classes using IDEC. 𝑉

 𝑟
 𝑗

 ClassicalClassifier Calculates the from the distance to classes using MC2PCA. 𝑉
 𝑟

 𝑗

 Table 2.3 : Models for the workload characterization

 Version 1.0 30 April 2024 Page 31 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Name Description
 RandomScheduler Schedules the VM on a random host in the valid host list.
 InteferenceAwareScheduler Schedules VM using Interference-Aware Scheduling. Selecting the

 optimal host by minimizing through using the 𝐷
 𝑚𝑎𝑥

 𝐷
 𝑔𝑟𝑒𝑒𝑛 ℎ

 𝑖

 distance metrics.

 Table 2.4 : Models for the scheduler

 Formal models for an energy-aware continuum systems

 At present few formal models of federated Cloud–Edge systems exist—and none
 adequately represent and integrate energy considerations (e.g., multiple providers,
 renewable energy sources, pricing, and the need to balance consumption over large-areas
 with other non-Cloud consumers, etc.)

 Energy-aware task migration may initially appear to be a straightforward process, but in
 production environments it can become extremely complex; effective placement requires
 intelligent decision-making while taking into account multiple factors including energy
 providers, energy policies, energy pricing, resource availability, SLO arbitration, etc. This is
 further exacerbated by the dynamic nature of Cloud–Edge environments, which are highly
 dynamic, mobile and complex, and above all seen as critical infrastructure that should not
 suffer from serious disruption.

 It is therefore vital that new algorithms, mechanisms and methods to improve energy
 utilisation in the Cloud Continuum are grounded on formal scientific models that identify
 and support the huge range of providers, heterogeneous components, interactions,
 stochastic properties, (potentially contradictory) service-level agreements, pricings, and
 contractual requirements present in both energy and Cloud–Edge systems.

 Figure 2.19: A high-level model for energy-aware Continuum systems

 Version 1.0 30 April 2024 Page 32 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 Through COGNIT, we have developed an initial high-level model for task placement in a
 Continuum context, published in [8]. In this work, we propose a perspective model for
 energy-aware Continuum systems as shown above in Figure 2.19 .

 This has served as one of the foundations for our work into interference-aware scheduling;
 we plan to develop the model and work further going forward. As a further example, we
 have developed a sequence diagram to illustrate workload execution for six energy
 scenarios, shown in Figure 2.20 .

 Figure 2.20: Sequence diagram for potential workload placement in energy scenarios

 Interference-Aware Scheduling

 The first version of the AI-O employs interference-aware scheduling, which has been
 shown to decrease energy consumption without compromising application performance
 [7]. The objective of interference-aware scheduling is to minimise contention of hardware
 resources on the hosts. We carry out this by trying to equalise the resource consumption
 of the individual hardware resources among all hosts, in turn distributing similar workloads

 Version 1.0 30 April 2024 Page 33 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 among the hosts. In principle, picking the host where adding the VM’s resource usage
 would minimise the distance between the hosts’ resource utilisation.

 Interference-Aware Scheduling:

 ● Let be the set of hosts. 𝐻 = { ℎ
 1
, ℎ

 2
, … , ℎ

 𝑛
}

 ● Let be the set of resources (CPU, memory, etc). 𝑅 = 𝑟
 1
, 𝑟

 2
, … , 𝑟

 𝑚 { }
 ● Let be the utilisation of resource at host . 𝑈

 ℎ
 𝑖
 𝑟

 𝑗

 𝑟
 𝑗

 ℎ
 𝑖

 ● Let be the resource demand of the VM for resource . 𝑉
 𝑟

 𝑗

 𝑟
 𝑗

 ● Let be the distance measure for host . 𝐷
 ℎ

 𝑖

 ℎ
 𝑖

 We are trying to minimise:

 (12) 𝐷
 𝑚𝑎𝑥

= 𝑚𝑎𝑥 (𝐷
 ℎ

 1

, 𝐷
 ℎ

 2

, … , 𝐷
 ℎ

 𝑛

)

 To calculate we use: 𝐷
 ℎ

 𝑖

 (13) 𝐷
 ℎ

 𝑖

=
 𝑗 = 1

 𝑚

∑ 𝑈
 ℎ

 𝑖
 𝑟

 𝑗

+ 𝑉
 𝑟

 𝑗
() − 𝑈

 𝑟
 𝑗

|
|
|

|
|
|

 where denotes the average utilisation of resource across all hosts. 𝑈
 𝑟

 𝑗

 𝑟
 𝑗

 To calculate we need , this requires an understanding of the resource consumption 𝐷
 ℎ

 𝑖

 𝑉
 𝑟

 𝑗

 of each VM. However, having the user specify the utilisation manually is inconvenient and
 potentially error-prone. Thus, we are instead inferring it from the historical resource usage
 of the VMs. We employ the workload characterization (see Section SR5.1) that provides
 the foundation of each class of workloads and representation. For example, calculating a
 VM’s distance to each of the classes gives us a proxy for its resource utilisation, assuming
 the classes represent distinct types of resource utilisation (e.g., CPU, memory, networks).
 If we have three classes () for the classifier we get that , 𝑐

 1
, 𝑐

 2
, 𝑐

 3
 𝑅 = { 𝑑 (𝑐

 1
), 𝑑 (𝑐

 2
), 𝑑 (𝑐

 3
)}

 where the function measures the distance to the center of the cluster. 𝑑

 Similarly, the intermediate representation of the Auto-Encoder (AE) should represent the
 resource utilisation of the VM. These are not directly representative of the typical
 resource metrics, such as CPU and memory, but we are exploring methods to correlate
 them to these metrics. For example, by looking at the change in resource utilisation at the
 host when deploying VMs with known vectors one can estimate the effect of each vector
 index relative to the host resources, thus giving us scalars from VM vectors to traditional
 metrics such as CPU. If we have the traditional metrics, and the 𝑅

 𝑡𝑟𝑎𝑑
= 𝑟

 1
, 𝑟

 2
, … , 𝑟

 𝑚 { }
 classifier metrics, then we plan to be able to estimate the 𝑅

 𝑐𝑙𝑎𝑠𝑠
= { 𝑑 (𝑐

 1
), 𝑑 (𝑐

 2
), 𝑑 (𝑐

 3
)}

 scalars to go from to by . 𝑆
 𝑖

= { 𝑠
 1 𝑟

 𝑖

, 𝑠
 2 𝑟

 𝑖

, 𝑠
 3 𝑟

 𝑖

} 𝑅
 𝑐𝑙𝑎𝑠𝑠

 𝑅
 𝑡𝑟𝑎𝑑

 𝑟
 𝑖

= 𝑠
 1 𝑟

 𝑖

* 𝑐
 1

+ 𝑠
 2 𝑟

 𝑖

* 𝑐
 2

+ 𝑠
 3 𝑟

 𝑖

* 𝑐
 3

 As this reverse lookup of metrics has yet to be developed our initial version of the
 Interference-Aware Scheduler does not schedule based on traditional metrics, e.g., CPU.
 Instead, it balances the host workload by evenly scheduling either the different cluster

 Version 1.0 30 April 2024 Page 34 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 classes, or the vector from the intermediate representation of the AE. However, this
 requires historical data on the VM’s resource usage. To circumvent this the VMs are tagged
 with a flavour, allowing us to estimate the typical/average consumption of that flavour and
 can thus be used for initial placement. Flavours without historical data can either be
 estimated using the most common VM resource usage, a randomised resource profile, or
 an average resource profile. Then, once the VM/flavour has been properly classified it can
 be rescheduled accordingly.

 This approach is easily extended to consider further optimization criteria. For example, the
 first iteration of the scheduler includes a green-energy optimizer. Scaling a VM’s resource
 usage relative to a host’s green-energy availability will prioritise deploying on the hosts
 provided with more green energy. This gives us an easily tunable parameter for optimising
 green-energy utilisation in the system. Similarly, though not yet developed, we could for
 example penalise deployments on over-allocated hosts, particularly important for
 heterogeneous environments.

 Green-energy adjustment of : 𝐷
 ℎ

 𝑖

 ● Let give the green energy percentage of the host 𝑔 (ℎ
 𝑖
)

 ● Let be the green-energy scalar 𝑠
 𝑔𝑟𝑒𝑒𝑛

 (14) 𝐷
 𝑔𝑟𝑒𝑒𝑛 ℎ

 𝑖

= 𝐷
 ℎ

 𝑖

+ 𝐷
 ℎ

 𝑖

* 1 − 𝑔 ℎ
 𝑖 ()() * 𝑠

 𝑔𝑟𝑒𝑒𝑛

 This could be extended to any arbitrary cost function as such, allowing for smarter 𝐹
 scheduling in the future:

 (15) 𝐷
 𝑔𝑟𝑒𝑒𝑛 ℎ

 𝑖

= 𝐷
 ℎ

 𝑖

+ 𝐹 (𝑔
 ℎ

 𝑖

, 𝐷
 ℎ

 𝑖

, …)

 Version 1.0 30 April 2024 Page 35 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 [SR5.3] Scheduling Mechanisms

 It became clear in this cycle that COGNIT needs a way to notify the AI-Enabled
 Orchestrator that a particular Serverless Runtime has been updated, which can be
 achieved thanks to the work performed in SR3.1 (see Deliverable D3.2).

 The mechanism used to implement this notification is the OpenNebula reschedule
 functionality. When a Virtual Machine is in the running or power-off state, it can be
 rescheduled to a different host by enabling (through the API) a rescheduling action over
 this particular VM. In the next scheduling interval, the VM will be considered by the
 OpenNebula scheduler for a rescheduling action, and thanks to the work in SR5.3
 presented in D4.1, all the VMs subject to be scheduled or rescheduled are delegated to the
 AI-Enabled Orchestrator.

 This SR has been improved in the context of the Provisioning Engine development (SR3.1),
 since the reschedule action is automatically triggered by the Provisioning Engine on any
 update of a Serverless Runtime, that potentially can change the VM characteristics in a
 way the merits a migration of hypervisor for the SR.

 Version 1.0 30 April 2024 Page 36 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 3. Energy-efficiency optimization and sustainability

 The availability of renewable energy is in many locations intermittent and varies based on
 the regional or local energy mix, time of day, and season. For some renewable energy
 sources, such as solar and in particular wind, the supply could fluctuate significantly
 throughout the day and be hard to predict. Scheduling workloads based on availability of
 renewable energy in a continuum, or a cloud-edge federation, therefore requires some
 degree of flexibility in either where the workload can be processed, or when.

 In the cloud-edge continuum, the provisioning of compute resources in different locations
 can be planned ahead of time in anticipation of renewable energy availability, to increase
 the share of renewable energy. The cloud-edge continuum therefore presents both
 opportunities and challenges for integrating renewable energy sources to ensure low cost
 and sustainability.

 Challenges for integrating and increasing the share of renewable energy in the
 cloud-edge continuum

 One of the first challenges is knowing whether a specific cloud or edge cluster is using
 green energy. Current approaches usually consider the energy mix in the regional power
 grid over a time period, and apply carbon accounting methods based on that. There are
 services (e.g., model as a service) for predicting and estimating renewable energy supply in
 advance that could be used for capacity planning. However, the situation is more
 complicated when taking local microgrids and energy storage into consideration - these
 are very different from the national power grid.

 It is common to predict the availability of renewable energy day-ahead (24 hours
 prediction), which can be updated throughout the day. Given such a prediction for the
 availability of renewable energy in different locations, the next challenge is planning the
 compute capacity in different cloud or edge clusters to match the patterns of renewable
 energy supply. This involves predicting the future workloads, or computing demand, for
 the next period e.g. next 24 hours, to plan the infrastructure capacity. Since workloads
 differ in terms of requirements, it is important to take this into consideration, balancing
 for example latency requirements and other location-based policies or restrictions, with
 energy-efficiency and renewable energy utilisation.

 Grid congestion, i.e., when electricity demand exceeds the capacity of the grid, is another
 challenging issue - for example the electricity could have been used for other purposes
 (such as producing green steel).

 Predicting resource demand in the cloud-edge continuum

 From the perspective of the AI-Enabled Orchestrator, one of the major challenges is to
 predict future compute resource demands to plan for infrastructural needs, such as
 provisioning new cloud or edge resources. This requires balancing requirements such as
 low latency and location-based policies with energy efficiency and demand for renewable
 energy utilisation. One solution to this problem is to collect historical data of
 computational resource usage and detect patterns such as peak load, and then let users

 Version 1.0 30 April 2024 Page 37 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 set a threshold for how much the system should be over-provisioned. However,
 over-provisioning may unfortunately decrease the energy efficiency as well as result in
 increased costs. On the other hand, allocating too few resources may result in an SLA
 violation or poor performance [9].

 To find the right balance and add flexibility, users could be allowed to define boundaries
 on how much they are willing to compromise on SLA requirements to prioritise renewable
 energy usage. For instance, a developer could set a limit that a particular application could
 tolerate up to 100 ms latency and then set a rule to prioritise renewable energy. In this
 scenario, an edge cluster running on renewable energy would be chosen if it meets the
 latency threshold of 100 ms, even if there is another non-renewable powered edge cluster
 offering lower latency.

 Another option could be to set a limit and boundaries on how long a particular function
 call can be delayed. In some scenarios, such as when offloading an emergency response
 function to detect wildfires, it is crucial that the computation is executed promptly.
 However, in other cases, such as federated learning or fine-tuning machine learning
 models, computations could perhaps be postponed until they can be executed on a cluster
 powered by renewable energy.

 One challenge is that provisioning new clusters may take time, which means that the AI-O
 needs to accurately predict the total computational demand for the upcoming period, such
 as the next hours, and also recommend when certain clusters need to be decommissioned.
 Automatically scaling and provisioning cloud resources has been extensively studied in
 previous work, e.g., for time-sensitive loads [10], carbon-aware day-ahead virtual capacity
 planning using forecasts of inflexible and flexible loads and load shaping [15, 16].
 However, in the context of a cloud-edge continuum to provision new edge clusters remains
 an open challenge, in particular considering balancing renewable energy and SLAs.

 Energy-efficient resource management and scheduling

 Once the virtual infrastructure has been provisioned, incoming workloads should be
 scheduled for processing at the different cloud/edge locations and hosts. This problem
 operates on smaller time scales than the planning of virtual compute capacity. There are a
 number of things to take into consideration:

 ● The power use of a server scales according to its CPU utilisation, as a quadratic
 function of its frequency, and is often around 30 % of maximum power in idle
 mode. For most cloud servers, the sweet spot for performance/power ratio is at
 around 70 % to 80 % CPU utilisation [11].

 ● On the other hand, the power needed for cooling goes up with server
 loads/utilisation, and depends non-linearly on the power used by the server. It is
 generally much more difficult to model.

 Holistic resource management is an approach to schedule workloads that improve
 energy-efficiency from a system perspective, without sacrificing Quality of Service (QoS)
 and Service Level Agreements (SLAs). That is, to place workloads to jointly optimise both
 1) the performance/power ratio of the server equipment, and 2) the energy used by the

 Version 1.0 30 April 2024 Page 38 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 cooling system. In holistic resource management, the aim is therefore to consolidate and
 move workloads between hosts to optimise the overall energy usage of a data center. The
 objective function for the optimization may include terms for total energy use, renewable
 energy utilisation, QoS measures, and SLA violations.

 In [12], they formulate an optimization problem with the objective to minimise the amount
 of non-renewable energy usage, assuming that workloads belong to one of two
 categories: interactive (latency-critical) and batch (that can be deferred to a later time). To
 match renewable energy supply with server loads, they defer batch jobs to times of higher
 renewable energy supply.

 The approach of [11] uses a Gated Graph Convolution Network to score candidate
 scheduling decisions based on three inputs: 1) the candidate matching between workloads
 and hosts, 2) task dependencies (they modelled a job as a collection of tasks), and 3) host
 thermal characteristics. The score is a weighted sum of average normalised energy
 consumption, average normalised temperature and ratio of job SLA violations. To reduce
 computational complexity, the scheduling decision only considers the K most power
 hungry tasks and the K most energy-efficient hosts at each scheduling iteration. In a
 subsequent work, the Gated Graph Convolution Network was replaced with a
 Convolutional Neural Network [13].

 In [17], the utilisation rate of the servers is jointly optimised with the control of the cooling
 system to minimise energy usage, using reinforcement learning. The inputs were server
 load, server outlet temperatures, and the duration and load of the different jobs. The
 reward function considered the power usage of the cooling system, the ratio of dropped
 jobs, and a penalty for exceeding a cold aisle temperature of 27 degrees Celsius.

 The operation of an edge node is optimised in a microgrid setting with onsite renewable
 energy generation and a battery storage for electricity in [14], taking into account the
 battery state of charge and renewable energy supply forecasts.

 These approaches either assume that the temperatures can be measured, or estimated
 using a simplified physical model of the system, and that the energy used for the cooling
 system can be directly calculated from these temperature measurements or estimates.
 Energy modelling and optimization in the cloud-edge continuum is highly challenging
 since:

 ● The hardware, server configurations, and cooling system characteristics are highly
 heterogeneous in the cloud-edge continuum. The energy models need to be
 adapted to each cloud or edge site.

 ● The cooling systems are operated by the infrastructure providers. In a federated
 cloud-edge continuum, the meta-orchestrator making the scheduling decisions will
 not be able to directly control the cooling system.

 Version 1.0 30 April 2024 Page 39 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 4. Conclusions and future work

 The Cloud-Edge Manager and AI-Enabled Orchestrator components have undergone
 significant development since the M9 (September 2023) implementation. This report
 describes the components in detail, and discusses the changes and improvements that
 have been made. Specifically, the Cloud-Edge Manager now deploys Serverless Runtimes
 across a real federated environment (testbeds located at RISE in Sweden and OpenNebula
 in Spain), and has been augmented with improved mechanisms to report service readiness.
 Additionally, the Cloud-Edge Manager now has the ability to report two new classes of
 metrics that are seen as essential for intelligent orchestration in the Cloud Continuum:
 geo-location metrics (to assist in delivering low-latency) and virtual machine energy
 metrics (to improve energy efficiency and use of renewable resources across the
 Continuum).

 This work feeds into the AI-Enabled Orchestrator component, which subsequent to M9 is
 now fully integrated with the Cloud-Edge Manager. In part using the newly available
 energy and geo-location metrics, significant work has been performed on unsupervised
 learning methods - seen as essential to provide predictive analytics in environments that
 lack labelled data. A model repository has been developed, and two unsupervised learning
 methods have been implemented: MC2PCA and IDEC; this report describes these methods
 in detail. Importantly, the ability to reschedule Serverless Runtimes is now available within
 the Orchestrator - this enables the movement and continued orchestration of existing
 runtimes, rather than the static deployments that existed in M9. Finally, to improve the
 reasoning capability of COGNIT, work has been performed and published to develop
 formal models for an energy-aware Cloud Continuum; this will form the basis going
 forward for more performant and efficient deployment strategies with a particular focus
 on energy. Currently this has informed our work on interference-aware scheduling.

 To reduce the energy use of, and the amount of non-renewable energy used by, the
 cloud-edge continuum, it is important to predict compute demand and how it can be
 scheduled over time and across locations, and proactively adapt the compute capacity
 accordingly. Measures need to be implemented to:

 ● Identify the most energy efficient of the participating edge clusters (possibly
 depending on the specific application/workload).

 ● Use forecasts of local availability (and carbon intensity) of renewable energy (both
 from the grid and on-site), to produce forecasts of available compute capacity
 running on renewable energy, across locations. Both grid and on-site energy supply
 and energy storage solutions need to be considered and optimised.

 ● Forecast the compute demands and dependencies of applications, across time and
 space.

 ● Proactively schedule the workloads and infrastructure to pair workloads with the
 right hosts, to improve system-level energy performance.

 ● More research is needed to understand how data centers can participate in the
 local energy markets to reduce grid congestion and improve overall grid resiliency

 Version 1.0 30 April 2024 Page 40 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 and reduce system-wide carbon emissions, including monitoring of, and
 participation in, smart grid initiatives and standardisation.

 In summary, to enable grid-aware computing, and promote data centers as active
 participants in future grid services, a holistic approach is needed to better adapt the
 current datacenter energy systems to developing standard energy market frameworks. It
 is necessary to investigate which grid services that datacenters should target, and develop
 interoperability frameworks for the multi-provider cloud-edge continuum based on local
 regulations and energy mix, as well as integrating their current Energy Management
 Systems (EMS) with local flexibility market operators and service platforms. Last, but not
 least, a sustainability assessment framework and methodology is needed to critically
 evaluate the above, given the local dynamics of carbon intensity and energy mix.

 The COGNIT Project aims to contribute to all these points in the coming research and
 innovation cycles, with a special focus on the challenges associated with energy efficiency
 optimization and smart placement by enabling AI/ML models across the cloud-edge
 continuum.

 Version 1.0 30 April 2024 Page 41 of 43

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 References

 [1] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural
 Computation, 9 , 1735-1780.

 [2] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly
 Learning to Align and Translate. CoRR, abs/1409.0473 .

 [3] Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., &
 Polosukhin, I. (2017). Attention is All you Need. Neural Information Processing Systems .

 [4] Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2020). Informer:
 Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. AAAI
 Conference on Artificial Intelligence .

 [5] Li, H. (2019). Multivariate time series clustering based on common principal
 component analysis. Neurocomputing , 349, 239-247.

 [6] Guo, X., Gao, L., Liu, X., & Yin, J. (2017). Improved Deep Embedded Clustering with
 Local Structure Preservation. International Joint Conference on Artificial Intelligence .

 [7] Mendoza, D., Romero, F., Li, Q., Yadwadkar, N. J., & Kozyrakis, C. (2021, April).
 Interference-aware scheduling for inference serving. In Proceedings of the 1st
 Workshop on Machine Learning and Systems (pp. 80-88).

 [8] Patel, Y.S., Townend, P., Singh, A. et al. Modeling the Green Cloud Continuum:
 integrating energy considerations into Cloud–Edge models. Cluster Computing (2024) .
 https://doi.org/10.1007/s10586-024-04383-w

 [9] [PREDICTION] Kumar, K. & Umamaheswari, E.. (2018). Prediction methods for effective
 resource provisioning in cloud computing: A survey. Multiagent and Grid Systems . 14.
 283-305. 10.3233/MGS-180292.

 [10] [ProactiveAutoScaler] A. Heimerson, J. Eker and K. -E. Årzén, "A Proactive Cloud
 Application Auto-Scaler using Reinforcement Learning," 2022 IEEE/ACM 15th
 International Conference on Utility and Cloud Computing (UCC) , Vancouver, WA, USA,
 2022, pp. 213-220, doi: 10.1109/UCC56403.2022.00040.

 [11] [HUNTER] Tuli, S., Gill, S. S., Xu, M., Garraghan, P., Bahsoon, R., Dustdar, S., Sakellariou,
 R., Rana, O., Buyya, R., Casale, G., & Jennings, N. R. (2022). HUNTER: AI based holistic
 resource management for sustainable cloud computing. Journal of Systems and
 Software/�the �Journal of Systems and Software , 184, 111124.
 https://doi.org/10.1016/j.jss.2021.111124

 [12] [SELFADAPTIVE] M. Xu, A. N. Toosi and R. Buyya, "A Self-Adaptive Approach for
 Managing Applications and Harnessing Renewable Energy for Sustainable Cloud
 Computing," in IEEE Transactions on Sustainable Computing , vol. 6, no. 4, pp. 544-558, 1
 Oct.-Dec. 2021, doi: 10.1109/TSUSC.2020.3014943.

 Version 1.0 30 April 2024 Page 42 of 43

https://doi.org/10.1007/s10586-024-04383-w
https://doi.org/10.1016/j.jss.2021.111124

 SovereignEdge.Cognit–101092711 D4.2 COGNIT Serverless Platform - Scientific Report - b

 [13] [HunterPlus] Iftikhar, S., Ahmad, M. M. M., Tuli, S., Chowdhury, D., Xu, M., Gill, S. S., &
 Uhlig, S. (2023). HunterPlus: AI based energy-efficient task scheduling for cloud–fog
 computing environments. Internet of Things , 21, 100667, Elsevier.
 https://doi.org/10.1016/j.iot.2022.100667

 [14] [ANIARA] Sebastian Fredriksson, Lackis Eleftheriadis, Rickard Brännvall, Nils Bäckman,
 and Jonas Gustafsson. 2023. ANIARA: Experimental Investigation of Micro Edge Data
 Centers with Battery Support on Power-Constrained Grids. In Companion Proceedings
 of the 14th ACM International Conference on Future Energy Systems (e-Energy '23
 Companion) . ACM, 72–78. https://doi.org/10.1145/3599733.3600252

 [15] [CarbonAware] A. Radovanović et al., "Carbon-Aware Computing for Datacenters," in
 IEEE Transactions on Power Systems , vol. 38, no. 2, pp. 1270-1280, March 2023, doi:
 10.1109/TPWRS.2022.3173250.

 [16] [PowerModeling] A. Radovanovic, B. Chen, S. Talukdar, B. Roy, A. Duarte and M.
 Shahbazi, "Power Modeling for Effective Datacenter Planning and Compute
 Management," in IEEE Transactions on Smart Grid , vol. 13, no. 2, pp. 1611-1621, March
 2022, doi: 10.1109/TSG.2021.3125275.

 [17] [HolisticController] Albin Heimerson, Rickard Brännvall, Johannes Sjölund, Johan Eker,
 and Jonas Gustafsson. 2021. Towards a Holistic Controller: Reinforcement Learning
 for Data Center Control. In Proceedings of the Twelfth ACM International Conference on
 Future Energy Systems (e-Energy '21) . ACM. https://doi.org/10.1145/3447555.3466581

 Version 1.0 30 April 2024 Page 43 of 43

https://doi.org/10.1016/j.iot.2022.100667
https://doi.org/10.1145/3599733.3600252
https://doi.org/10.1145/3447555.3466581

