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 Abstract 
 COGNIT is an AI-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge 
 Continuum that enables the seamless, transparent, and trustworthy integration of data 
 processing resources from providers and on-premises data centers in the cloud-edge 
 continuum, and their automatic and intelligent adaptation to optimise where and how 
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 in WP4 “AI-enabled Distributed Serverless Platform and Workload Orchestration” during 
 the Second Research & Innovation Cycle (M10-M15), providing details on the status of a 
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 Efficiency Optimization in the Multi-Provider Cloud-Edge Continuum. 
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 Executive Summary 

 This is the second “COGNIT Serverless Platform - Scientific Report” that has been produced 
 in WP4 “AI-enabled Distributed Serverless Platform and Workload Orchestration”. It 
 describes in detail the progress of the software requirements that have been active during 
 the Second Research & Innovation Cycle (M10-M15) in connection with these main 
 components of the COGNIT Framework: 

 Cloud-Edge Manager 

 ●  SR4.3  Serverless Runtime Deployment: 

 Deploy Serverless Runtime as Virtualized Workloads (e.g. Containers or 
 VMs/microVMs) on the cloud-edge infrastructure. 

 ●  SR4.4  Metrics, Monitoring, Auditing: 

 Edge-Clusters monitoring, Serverless Runtimes metrics collection and 
 continuous security assessment. 

 AI-Enabled Orchestrator 

 ●  SR5.1  Building Learning Model: 

 Implement AI/ML model based on collected metrics from Edge Cluster entities 
 and serverless runtimes deployed across the distributed cloud-edge continuum. 

 ●  SR5.2  Smart Deployment of Serverless Runtimes: 

 Implement a Smart Workload Orchestrator (SWO) that exposes a REST API 
 used by the Cloud-Edge Manager for requesting the deployment plans used for 
 provisioning the Serverless Runtimes. 

 ●  SR5.3  Scheduling Mechanisms: 

 Implement a scheduler that will place the Serverless Runtimes on the 
 Edge-Clusters resources according to the deployment plan provided by the 
 AI-Enabled Orchestrator. 

 This deliverable has been released at the end of the Second Research & Innovation Cycle 
 (M15), and will be updated with incremental releases at the end of each research and 
 innovation cycle in M21, M27, and M33. 
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 1. Cloud-Edge Manager 

 The Cloud-Edge Manager is responsible for managing the cloud-edge continuum 
 infrastructure and performing actions to manage the lifecycle of the different Serverless 
 Runtimes, collecting their metrics and monitoring the infrastructure resources they use. 

 The main responsibilities of the Cloud-Edge Manager are, thus: 

 ●  Exposing through an API the operations for managing the cloud-edge continuum 
 infrastructure (i.e., physical computational hosts, networks and storages across 
 multi-cloud providers and edge locations) and managing the Serverless Runtimes, 
 used by Device Client to offload functions. 

 ●  Monitoring both the cloud-edge infrastructure and the Serverless Runtimes to 
 provide the AI-Enabled Orchestrator with information to implement automatic and 
 intelligent adaptation for the placement of the Serverless Runtimes. 

 ●  Providing authentication and authorization mechanisms for accessing and securing 
 resources such as physical hosts, virtual resources, networks, services, etc. 

 In this second development cycle the main work performed in the Cloud-Edge Manager 
 relates to the deployment of the Serverless Runtime, with provided guides and improved 
 mechanisms to report readiness of the service and addition of different metrics to aid in 
 the intelligent orchestration of resources. 

 [SR4.3] Serverless Runtime Deployment 

 Description 

 As introduced in D4.1, Serverless Runtimes are modelled in the Cloud-Edge Manager as an 
 OpenNebula OneFlow service, which in turn is composed of OpenNebula VM Templates 
 and Images. 

 A Serverless Update guide  was created and distributed to support the need of the 2

 different use cases defining their own Serverless Runtime flavours, with specific software 
 libraries related to their specific applications. The guide explains the actions necessary to 
 either update an existing Serverless Runtime, or to clone an existing one and update the 
 new copy. 

 The Serverless Runtime deployment relies on the OpenNebula contextualization 
 mechanism. OpenNebula contextualization is the process by which a virtual machine (VM) 
 can be dynamically configured and customised during its instantiation or runtime within an 
 OpenNebula cloud environment. Contextualization allows administrators to automate the 
 configuration of VMs, ensuring that they meet specific requirements and are properly 
 integrated into the cloud environment. This mechanism is used in the Serverless Runtime 
 deployment procedure to implement a number of functionalities: 

 2  https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime/wiki/How-to-update-sr-template-image 
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 ●  Start of the Serverless Runtime service within the Virtual Machine. This is achieved 
 using existing functionality  that triggers scripts at boot time. A script was 3

 developed to perform a series of automated steps: 
 ○  clone the COGNIT Serverless Runtime repository. 4

 ○  install dependencies of the Serverless Runtime service. 
 ○  optionally, install flavour specific dependencies. 
 ○  launch the Serverless Runtime service. 

 ●  The existing OpenNebula OneGate component  is used to push information about 5

 the VM having finished its boot procedure, setting a custom attribute (READY=yes) 
 to the VM metadata, allowing the Provisioning Engine to report the Serverless 
 Runtime as ready when this attribute is found. This is performed if a Virtual 
 Machine metadata contains the REPORT_READY attribute. When set to YES, the 
 OpenNebula contextualization packages (that are executed in the guest OS as part 
 of its boot process) will report the VM to be READY to the OneGate client. This is 
 useful for the OpenNebula OneFlow service to determine when a VM is in running 
 state as the VM might be running from the perspective of the hypervisor, but still 
 booting and or configuring important services, like the  one-context  daemon. 

 This existing feature showed a critical limitation in the COGNIT execution model. Having 
 the READY=yes attribute in a Virtual Machine metadata means that the VM has been 
 booted, however, it does NOT imply that the Serverless Runtime service is running. Hence, 
 a high failure rate was detected from the Device Client at the time of offloading the first 
 function, as usually the Serverless Runtime service takes time to be launched that needs to 
 be accounted for. Therefore, an extension of the existing contextualization mechanism in 
 OpenNebula has been implemented in this second cycle, to answer the need of the 
 Provisioning Engine to report the Serverless Runtime as running when the Serverless 
 Runtime Application initialization is finished. 

 Data model 

 Two new attributes (see Table 1.1) were added in the OpenNebula contextualization 
 mechanism, contributed upstream. The contextualization mechanism checks if these 
 attributes are defined in the VM metadata and acts according to its values. 

 Attribute Name  Description 

 READY_SCRIPT 

 When the variable is defined, the REPORT_READY 
 functionality will only be used after the contents of the 
 variable are successfully executed. It is useful to customise 
 your appliance readiness. For example READY_SCRIPT="nc 
 -vz localhost 8000" will only return 0 if the port 8000 is up. 

 5  https://docs.opennebula.io/6.8/management_and_operations/multivm_service_management/onegate_usage.html 

 4  https://github.com/SovereignEdgeEU-COGNIT/serverless-runtime 

 3  https://docs.opennebula.io/6.8/management_and_operations/references/template.html#context-section 
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 READY_SCRIPT_PATH 

 Similar to READY_SCRIPT but the script exists in the Guest 
 filesystem and its path is what needs to be defined on the 
 CONTEXT section. For example 
 READY_SCRIPT_PATH=/usr/bin/echo. 

 Table 1.1:  New contextualization attributes 

 This functionality is now being used on the Serverless Runtimes VM Templates to check if 
 the Serverless Runtime Application running inside the VM has bound its port. 
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 [SR4.4] Metrics, Monitoring, Auditing 

 Extensive work was carried out in this second development cycle to enrich the monitoring 
 attributes gathered by OpenNebula and Prometheus in order to support the different 
 scheduling decisions made by the AI-Enabled Orchestrator component. We will present 
 the work grouped by the type of metric to be measured. 

 COGNIT Specific Metrics 

 As presented in D3.2 under the “[SR2.1] Secure and Trusted FaaS Runtimes section”, the 
 Serverless Runtime service exhibits a Prometheus Exporter, running by default on port 
 9100. 

 A new attribute is now available in the VM metadata, as seen in Table 1.2. 

 Attribute Name  Description 

 PROMETHEUS_EXPORTER 

 Prometheus exporter port. This is used by the 
 OpenNebula Prometheus integration to scrap the 
 Prometheus exporter running on the VM guest OS. 

 Table 1.2  : New VM metadata attribute for COGNIT integration  with Prometheus 

 If this  attribute is defined, then the OpenNebula frontend will automatically add those 
 VMs as scrapping targets of the Prometheus server running in the frontend. This is 
 achieved by extending the current Prometheus integration, which relies on a datasource 
 patch script which takes care of updating the Prometheus configuration file that holds the 
 targets to scrap. In other words, it updates the Prometheus scraping endpoints (ie, what 
 Prometheus can inspect to extract metrics) and that needs to be run manually. In a 
 production OpenNebula deployment this is not a significant problem since the integration 
 only covers hypervisor exporter scrapping rather than per VM exporter scrapping. Adding 
 a hypervisor node to an OpenNebula cloud is a much more static and rare operation than 
 creating a new VM, so in the context of the COGNIT project a more dynamic approach is 
 needed, as it is not realistic to rely on manual update of the Prometheus datasources. 

 As part of the development of this functionality of dynamic scrapping endpoints for the 
 OpenNebula Prometheus integration,  two OpenNebula hooks  were created (hooks are 6

 scripts that can be associated with any resource state change or API call in OpenNebula), a 
 VM state hook and a HOST state hook. Both hooks are intended to automatically run the 
 data sources patch  script every time a VM reaches the RUNNING state and a HOST reaches 
 the MONITORED state. 

 6  https://docs.opennebula.io/6.8/integration_and_development/system_interfaces/hook_driver.html#overview 
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 The default patch data sources are also modified to include the addition of this new type 
 of exporter. An excerpt of the config file can be found on  Figure 1.1  , showcasing IPv6 and 
 IPv4 targets. 

 -  job_name:  sr_exporter 
 static_configs: 
 -  targets: 
 -  "[2001:67c:22b8:1::11]:9100" 
 labels: 
 vm_id:  '1329' 

 -  targets: 
 -  "[2001:67c:22b8:1::7]:8787" 
 labels: 
 vm_id:  '1323' 

 -  targets: 
 -  "[2001:67c:22b8:1::9]:8787" 
 labels: 
 vm_id:  '1320' 

 -  targets: 
 -  "[2001:67c:22b8:1::8]:8787" 
 labels: 
 vm_id:  '1317' 

 Figure 1.1  Prometheus Scrapper Configuration File 

 This new mechanism has been deployed on the COGNIT testbed and activated to the VM 
 Template backing each of the use cases Serverless Runtime flavours. 

 Energy Metrics for Virtual Machines 

 As a continuation of the work done in the first development cycle and presented in D4.1, 
 the Scaphandre integration in OpenNebula has been extended to allow for VM energy 
 metric extraction, as well as the already performed hypervisor energetic metrics 
 extraction. 

 Scaphandre  is a metrology agent dedicated to electrical power consumption metrics. The 7

 goal of the project is to permit any company or individual to measure the power 
 consumption of its tech services and get this data in a convenient form, sending it through 
 any monitoring or data analysis toolchain. 

 As part of its integration with OpenNebula, a Scaphandre agent is installed on each 
 hypervisor host, which is in charge of collecting the consumption metrics. Using the 
 Prometheus exporter provided by Scaphandre, the metrics are exported and stored in 
 Prometheus and can be later queried from Grafana. Scaphandre gathers an estimation for 
 the power consumption for each process in a physical machine using the CPU RAPL 8

 extensions. A high level view of the configuration is presented in  Figure 1.2  . 

 8  https://hubblo-org.github.io/scaphandre-documentation/compatibility.html#checking-rapl-is-available-on-your-cpu 

 7  https://github.com/hubblo-org/scaphandre 
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 Figure 1.2.  OpenNebula Scaphandre Integration enabling  VM metric gathering 

 The power metrics per-VM are computed strictly for each VM. That was accomplished after 
 filtering the power consumption per process reports for the host running every VM via 
 Scaphandre. Scaphandre provides an estimation of the power consumption per each 
 process of the host, accessing to the Linux powercap devices (RAPL extensions) on the 
 physical host. As each VM is a process, power used for each one of them can be isolated. 

 Intel and AMD processors have been introducing extensions that compute RAPL (Running 
 average power limit) for most of its processors. These extensions account the CPU time as 
 per the frequency that each computing domain uses (being a domain a set of physical 
 resources) and compute a good estimation of the amount of energy that it has been using. 
 The drawback of this approach is the need for relatively new CPUs and operating systems. 
 For instance, in order to access this power capability extensions on Ryzen  processors a 9

 recent Linux kernel (greater than 6.0) is needed. 

 Scaphandre correlates the resource usage per each process with the RAPL data, thus 
 allowing us to have a good estimation for the power consumption of each process. Every 
 VM running on a host is an independent process, so this estimation can be considered the 
 power consumption for every VM isolating its Scaphandre metrics for power usage (in 
 microWatts). These measurements reflect only CPU/memory/internal GPU power 
 consumption and are not adding GPU power to it. 

 9  https://www.amd.com/en/products/processors/desktops/ryzen.html 
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 Scaphandre offers an integration with Prometheus so the energy metrics are available for 
 consumption to the AI-Enabled Orchestrator through the Prometheus integration. 

 Geolocation Metrics 

 A key problem that the COGNIT project aims to give a solution for is delivering low latency 
 function offloading. For this to be optimally solved, metrics on geolocation need to be 
 provided to the AI-Enabled Orchestrator so it can infer latency in the relevant points of the 
 continuum for the particular cloud infrastructure where the COGNIT framework is 
 deployed. 

 With this extension, every hypervisor host with a public IP address has a GEOLOCATION 
 attribute added to their OpenNebula metadata. This will hold a space separated list of 
 coordinates in the form of `latitude,longitude` corresponding to the geographic location 
 of the public IP address. The open source project geocoder  is leveraged to obtain this 10

 information. 

 An OpenNebula hook has been developed that can be tied to changes of state in the 
 OpenNebula hosts. Every time a host enters the MONITORED state, which should be the 
 end result of adding a host, the attribute `GEOLOCATION` should appear in the host 
 template. This effectively implements the integration since there is no need for periodic 
 refreshments of this metric as hypervisor hosts have a static location. This information is 
 available to the AI-Enabled Orchestrator through the OpenNebula API. 

 10  https://github.com/alexreisner/geocoder 
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 2. AI-Enabled Orchestrator 

 The AI-Enabled Orchestrator (AI-O) is the heart of the serverless platform that enables 
 multiple features, including: 

 ●  optimal placement of serverless runtimes, 
 ●  dynamic migration of applications while changing application requirements, and 
 ●  optimal resource utilisation in the cloud-edge continuum proactive migration. 

 For example, while changing energy usage of an individual cluster according to the energy 
 and sustainability metrics collected by the cloud-edge manager. The AI-O will employ 
 multi-objective optimization to concurrently evaluate the multiple objectives 
 simultaneously from device clients to offloading applications to clusters in the cloud-edge 
 continuum. This will ensure conflicting goals maximising performance while minimising 
 cost, running on green clusters whenever available, and being well-balanced. The main 
 focus of this version of the implementation has been on preliminary research, such as 
 implementing learning models and the end-to-end integration of its subcomponents. 

 [SR5.1] Building Learning Models 

 Description 

 AI-Enabled Orchestrator is key in COGNIT Framework, where AI/ML models are developed 
 to address multiple downstream tasks within the orchestrator, such as characterization 
 and classification of workloads, prediction of workloads, optimization of resource 
 utilisation, proactive migration, and energy-aware placement. The provisioning engine 
 within cloud-edge manager collects both application and resource metrics that integrate 
 with OpenNebula and Prometheus. The AI-Enabled Orchestrator can pull the metrics to 
 train a learning model that can make smart decisions. TimeScaleDB is configured to store 
 the pulled metrics from OpenNebula Prometheus. Consequently, these metrics will be the 
 base for training learning models for diverse downstream orchestrator tasks. Given that 
 monitored metrics lack labelling, unsupervised learning methods are adopted since each 
 model can learn from data without any prior label. 

 Deep learning (DL) models have been overperforming classical machine learning models  in 
 predicting time series data. Although, they are data hungry and expensive in computation. 
 For example, Long Short-Term Memory (LSTM) networks are in the category of recurrent 
 neural networks, which can capture the complex patterns and regularities in the sequence 
 data [1]. Attention mechanisms can help a model to learn the important information in 
 data while discarding unimportant information simultaneously [2]. Transformer models 
 employ attention mechanisms extensively, which can enhance in analysing time series data 
 for different downstream tasks, including prediction [3][4]. 

 As part of AI/ML model development, the AI-O will maintain a model repository for diverse 
 downstream tasks. These models will be selected at runtime according to the downstream 
 tasks. Even though, currently developing number of models for the model repository, AI-O 
 employs two unsupervised learning methods: 1) Multivariate time-series clustering based 
 on common principal component analysis (Mc2PCA) [5]; and 2) Improved deep embedded 

 Version 1.0  30 April 2024  Page  13  of  43 



 SovereignEdge.Cognit–101092711  D4.2 COGNIT Serverless Platform - Scientific Report - b 

 clustering (IDEC) [6], which is an enhanced method based on the deep embedded 
 clustering algorithm [7]. The Mc2PCA is a classical learning  method, developed inspired by 
 K-means algorithm, whereas the IDEC model is DL-based that integrates the clustering 
 stage into the neural network. 

 Mc2PCA 

 Mc2PCA [5] is developed inspired by K-means algorithm. Precisely, this algorithm includes 
 three major steps. 

 1)  First, assign all workload series to  N  clusters equally  (1 <  N  <  L  ),  L  is the amount of 
 workload series. 

 2)  Secondly, a common projection axis  S  k  for cluster  k (1 ⩽  k  ⩽  N  ) is constructed using 
 common principal component analysis (CPCA, a variant of principal component 
 analysis). Equations (1), (2) and (3) illustrate the computation required in CPCA 
 algorithm. Let cluster  k  contain N time series, calculate  covariance matrix  C  i  for 

 each time series  x  i  , then get the common covariance matrix  by averaging all  C  i  .  𝐶 
 Finally, using singular value decomposition (SVD)  to decompose  and reserve 11  𝐶 
 first  p  components to get the common projection axes  S  k  (  p  = 4 in the current 
 implementation). Here, the CPCA algorithm applies to all clusters to obtain the 
 corresponding common projection axis. 

 (1)  𝐶 
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 3)  Thirdly, project and reconstruct virtual machine workload time series  x  i  to each 
 cluster by corresponding common projection axis  S  k  (shown in Equation 4),  and 
 calculate the error between  x  i  and reconstructed input  x  i 

 ’  (Equation 5). Then 
 reassign  x  i  to the cluster  k  ’  , which has the minimum  error. Calculate the overall 
 reconstruction error  E  after all samples have been  reassigned (Equation 6). 
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 11  https://en.wikipedia.org/wiki/Singular_value_decomposition 
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 Step 2 and 3 would be iterated repeatedly until the overall reconstruction error  E  remains 
 unchanged between two adjacent iterations.  Figure  2.1  illustrates the workflow of 
 Mc2PCA algorithm. 

 Figure 2.1.  The workflow of Mc2PCA algorithm, MTS  indicates Multivariate Time Series 

 IDEC 

 The IDEC [6] algorithm is a deep learning-based End-to-End clustering algorithm. 
 Specifically, IDEC employs classical Encoder-Decoder architecture to obtain the feature 
 vector of the original workload, i.e., collected metrics as time series, and then carries out 
 clustering based on feature vectors. Figure 2.2 illustrates the architecture of IDEC. The 
 input data of IDEC model is a flattened tensor of multi-variant time series, all network 
 layers in the encoder-decoder model are fully connected layers, while they can also be 
 replaced by another kind of deep learning operator like the 1-D convolution layer. 

 Figure 2.2.  IDEC Architecture. z is the feature vector;  x is the input workload; x’ is the 
 reconstructed input. 
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 The training of IDEC consists of two steps. 

 1)  Train encoder-decoder with single loss of reconstruction measured by Mean 
 Squared Error (MSE): 

 (7)  𝐿 
 𝑟 

=    
 𝑖 = 1 

 𝑛 

∑  ‖  𝑥 −  𝑥  '  ‖ 
 2 

 2 

 2)  Train IDEC model with combined loss for both clustering and reconstruction (  L  T  ). 
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 z  i  is the feature vector extracted by encoder in IDEC  model, u  j  is the clustering center of 
 cluster k (0 < j < k), which is initialized by k-means algorithm. q  ij  is the similarity between 
 feature vector z  i  and cluster center u  j  measured by  student’s t-distribution. P  ij  is the 
 auxiliary target distribution. The clustering loss L  c  is defined by KL 
 (Kullback-Leibler)-divergence between P and Q. From Equations (8), (9) and (10), it is 
 obvious that P  ij  is decided by q  ij  which demonstrates  that IDEC is a self-supervised learning 
 algorithm, also an unsupervised learning algorithm. In Equation (11),  𝛾 > 0 is a coefficient 
 that controls the degree of distorting embedded space. 

 In the inference step, the decoder part is removed, and only the encoder as well as the 
 clustering layer are required. 

 Data 

 Both models are ready for evaluation with any of these three different data sources: 
 public or benchmark dataset, testbed dataset, and emulator dataset. Here, the analysis 
 and results are reported based on a public dataset. 

 Public dataset:  The  GWA-t-12 Bitbrains  dataset was  used to validate the inspired models. 
 It contains historical performance data of 1750 virtual machines from a distributed 
 datacenter in TU Delft, which is a service provider that is specialised in managed hosting 
 and business computation for enterprises. The data contains 10 metrics, namely: 

 1.  CPU cores: number of virtual CPU cores provisioned. 
 2.  CPU capacity provisioned (CPU requested): the capacity of the CPUs in terms of 

 MHz, which is equal to number of cores x speed per core. 
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 3.  CPU usage: in terms of MHz. 
 4.  CPU usage: in terms of percentage. 
 5.  Memory provisioned (memory requested): the capacity of the memory of the VM in 

 terms of KB. 
 6.  Memory usage: the memory that is actively used in terms of KB. 
 7.  Disk read throughput: in terms of KB/s. 
 8.  Disk write throughput: in terms of KB/s. 
 9.  Network received throughput: in terms of KB/s. 
 10.  Network transmitted throughput: in terms of KB/s. 

 Testbed data:  The primary goal of the project is to  deploy the developed models in the 
 COGNIT Framework  to validate their performance, precisely for different downstream 
 tasks in the orchestrator.  Device client offloads the task to serverless runtimes that needs 
 to be deployed in an edge cluster according to the requirements and availability. 
 Intuitively, cloud-edge manager monitors and collects data as reported in Section 1. 

 Emulator data:  The COGNIT testbed setup lacks diversity  of deployed applications which is 
 required to verify the scalability of the model and systems. So an emulator has been 
 developed in parallel. However, the emulator is integrated with the COGNIT testbed. So it 
 is possible to verify the developed models in both scenarios. 

 Data generation using the emulator 

 The purpose of the emulator (available  here  , see  Figure  2.3  ) is to replicate the essential 
 functionality of the COGNIT testbed to be able to deploy representative workloads to 
 generate the necessary data for training and validation of the ML models for the AI-O. The 
 emulated data is not exactly representative of the real environment although as it is 
 generated we can easily label it, thus allowing us to quickly validate our models, enabling 
 faster prototyping and debugging. It also allows us to start building models for 
 yet-to-be-implemented functionality, as we can prototype different models on the 
 synthetic data. 

 The emulator tries to be as close as possible to the testbed while being able to emulate 
 larger systems on less powerful hardware. With this in mind and also searching for a 
 time-effective solution in terms of development, we chose Prometheus for monitoring, as 
 the testbed uses it, thus making it more coherent and the AI-O Connector easier to 
 develop. However, as the emulator SRs are implemented using containers, we decided that 
 using cAdvisor to extract the SR metrics would be the easiest solution. 
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 Figure 2.3  : AI-O Emulator Architecture 

 The applications are represented by a set of stress tests from stress-ng  . This allows the 12

 creation of applications with distinct performance characteristics, simplifying the 
 validation of the workload classifiers. Further validation through developing applications 
 with overlapping performance characteristics thus only requires running multiple stress 
 tests simultaneously. Application requests are generated from the  Client Emulator 
 container. This container exposes an API to start sending requests to a specified IP (an 
 Emulated serverless runtimes  IP). 

 The  Emulated SR  is kept lightweight and generic, with  containers providing an API for 
 running stress-ng with custom parameters. The hosts for the  Emulated SRs  are kept as 
 simple Ubuntu VMs with Docker, cAdvisor, and a host agent that exposes a simple API for 
 controlling the containers. To integrate a host one needs to clone the  emulator repository 

 12  https://wiki.ubuntu.com/Kernel/Reference/stress-ng 
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 to the host, configure the environment variables (see  .env  ), and then run the 
 install_for_hosts.sh script  . 

 The  Ctrl_Plane  emulates the CE-M of Cognit. This component  is responsible for managing 
 the  Emulated SRs  through the hosts, as well as initiating  new clients on the  Client Emulator  . 
 To allow the AI-O to seamlessly integrate with the emulator it also replicates the interface 
 between the AI-O and the CE-M. This opens up the future possibility of training 
 reinforcement learning agents for the AI-O using the emulator. 

 We have also partially developed the functionality to modify the network configuration 
 between components  to emulate a deployment across  a Cloud-Edge environment using 
 Traffic Control (TC). This allows us to emulate more complex network configurations than 
 the COGNIT testbed can provide. However, this functionality is as of yet unfinished. 

 Results 

 Both inspired models are implemented based on the public dataset with 7 different 
 metrics, both algorithms were trained and tested with 56049 and 14013 samples, 
 respectively. The algorithms are evaluated and compared from the perspectives of 
 precision and latency. For precision, Silhouette metric is employed since it can quantify 
 how well a sample fits into its assigned cluster and how distinct it is from other clusters, 
 the range of Silhouette Score is from -1 to 1, while a higher score demonstrates superior 
 clustering precision. For latency, we compare the elapsed time of processing 1000 
 samples, which can be regarded as 1000 virtual machines waiting for scheduled in the real 
 application. The Silhouette Scores of Mc2PCA and IDEC algorithms are 0.029 and 0.92, and 
 latency are 0.026s and 0.195s, respectively. Figures 2.4 to 2.7 illustrate the results of two 
 algorithms, the feature vector’s dimensionality has been decreased to 2 by PCA for 
 visualisation. 

 Figure 2.4.  IDEC: 0.195s, Mc2PCA: 0.026s.  Figure 2.5.  IDEC: 0.92, Mc2PCA: 0.029. 
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 Figure 2.6.  Clustering results of Mc2PCA.  Figure 2.7.  Clustering results of IDEC. 

 From the current implementation and experimental analysis, IDEC model shows higher 
 silhouette score than Mc2PCA, which indicates that the neural network is stronger in 
 extracting features and learning without manual effort. Hence, more advanced DL-based 
 algorithms will be designed and implemented as a follow-up to this and added to the 
 model repository. 
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 [SR5.2] Smart Deployment of Serverless Runtimes 

 Description 

 The AI-Enabled Orchestrator is responsible for multiple downstream tasks that include 
 optimal resource utilisation, placement of serverless runtimes, dynamic migration of 
 applications, and proactive migration across infrastructures. This component takes a set of 
 SRs and the corresponding valid hosts and optimises the placement according to the 
 selected scheduling model. This can be achieved by integrating the historical data of the 
 SRs and the host data to a multi-objective optimization that schedules serverless runtimes 
 and aims to optimise against resource contention and green-energy utilisation. 

 Figure 2.8:  Architecture of the AI-Enabled Orchestrator 
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 Architecture & Components 

 The AI-O is decomposed into multiple subcomponents, including the database, the 
 environment (env) server, and the ML server. Each component consists of multiple parts, 
 see Figure 2.8. This allows for a modular design allowing individual parts to be modified, 
 scaled or swapped completely without impacting the rest of the system. This is particularly 
 important for the machine learning parts as we plan to provide a model repository where 
 the user can choose models depending on their use-case. 

 The AI-O deploys a local database that caches data from external data sources, which 
 could be Emulator's prometheus service, OpenNebula prometheus, and OpenNebula core 
 oned daemon. This offers the following benefits: 

 ●  Locally cached data, decreasing network bandwidth and latency while beneficial in 
 re-training scenarios and fast scheduling decisions. 

 ●  Arbitrary schema enables custom metrics, e.g., asynchronous ML-based analysis, or 
 pre-processing at ingestion (the Connector in Figure 2.8). 

 ●  Custom retention and/or aggregation policies. 

 Precisely, there is a cost of duplicating data and potentially fetching unnecessary data 
 from the external data sources . If that cost is substantial, this could be circumvented 
 thanks to the modular design of the AI-O. The architecture abstracts data fetching at the 
 Database Manager (see Figure 2.8), thus, the Connector and Database Manager could be 
 changed to instead fetch certain data synchronously from the external data source. 
 Although it is a relatively small change, it will not be explored in this project. 

 External data sources can be any arbitrary data source. For this project, we are developing 
 custom connectors for reading data from an Emulator’s Prometheus service, 
 OpenNebula’s Prometheus, and oned services. Integrating against other data sources, e.g., 
 a Kubernetes cluster, or weather metrics, only requires a Connector that needs to be 
 developed. 

 The ML-Enabler/Daemons are non-decision-making models, primarily focused on data 
 compression/extraction and forecasting. There are two types of models, first, 
 asynchronous, continuously providing the most recent predictions without affecting the 
 decision-making time, particularly useful for slower-executing models. Secondly, we have 
 the synchronous models, lighter-weight models that are either significantly impacted by 
 data staleness or unnecessary to execute at predefined intervals. For the M15 (March 
 2024) deliverables, we have developed a set of classifiers, these do not make decisions but 
 instead extract a compressed representation of a system's raw time series data, 
 simplifying the scheduling models, see below in Schedule VMs for further information on 
 their integration. Here, a VM may hold multiple serverless runtimes. 

 The Scheduler/Agent models are the action-performing/state-changing models, focusing 
 on optimising the Cloud-Edge continuum according to specified objectives. There are 
 multiple potential optimization areas, e.g., number and location of Edge Clusters, size and 
 number of hosts, VM placement within or between Edge Cluster, caching and storage, 
 networking, etc. The execution latency on these models might also vary significantly, even 
 with different models tackling the same problem. For example, initial VM placement 
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 requests should be resolved quickly whereas optimising the VM placement through 
 migrations is usually less time-sensitive. Therefore, the models are separated, simplifying 
 the training and architecture of each individual model. For example, in M15 we developed 
 an interference-aware scheduler, using the VM representation from the above-mentioned 
 classifier, to intelligently place VMs across the edge clusters. 

 Schedule VMs 

 Scheduling VMs using the AI-O is an eight-step process (shown in orange in  Figure 2.8  ). 

 1.  AI-O frontend receives the request for a set of SRs (serverless runtimes) and their 
 corresponding valid hosts (see Deliverable D4.1 further info). 

 2.  Frontend forwards these as separate scheduling requests to the ML Server. 
 3.  ML Server forwards the request to the currently selected scheduler and classifier. 
 4.  Scheduler and classifier fetch historical data about the SRs and hosts from the 

 Database Manager. 
 5.  Scheduler makes a scheduling decision based on the state of the hosts and the 

 classification of the SR workload characteristics (using the currently selected 
 classifier). 

 6.  Returning the scheduling decision from scheduler to ML server. 
 7.  Returning the scheduling decision from ML server to AI-O frontend. 
 8.  AI-O frontend waits for all SRs to be scheduled and lastly returns the scheduling 

 decisions to its caller. 

 Database Manager APIs 

 The database manager has three API endpoints:  /vms  ,  /hosts  ,  /metrics  (shown in Table 2.1, 
 Figures 2.9 - 2.15  ). Each of these allows retrieval  and storage of corresponding data. The 
 VMs and hosts tables consist of the latest metrics and state for each object. VMs have: id, 
 state id, deployed status, deployed host id, CPU count and usage, available and used 
 memory, disk read and writes, and finally network reads and transmits. Hosts have: id, CPU 
 count and usage, available and used memory, disk read and writes, network reads and 
 transmits, and finally energy usage. Metrics are time series formatted, having: id, object 
 type (VM or host), CPU usage, memory usage, disk read and write, network reads and 
 transmits, and finally energy usage. 

 Action  Verb  Endpoint  Request Body  Response 

 Get all the VMs, 
 states and most 
 recent metrics. 

 GET  /vms 
 A JSON formatted 
 according to  Figure 
 2.9  . 

 Status code 200 (Success) 
 if the execution was 
 successful. An array 
 version of JSON 
 formatted according to 
 Figure 2.11  . 
 400 (Bad request) if there 
 is any error. 
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 Get the VM’s state 
 and most recent 
 metrics (VMid 
 specified in the URL). 

 GET  /vms/:id 
 A JSON formatted 
 according to  Figure 
 2.9  . 

 Status code 200 (Success) 
 if the execution was 
 successful. A JSON 
 formatted according to 
 Figure 2.11  . 
 400 (Bad request) if there 
 is any error. 

 Add a VM and its 
 state and initial 
 metrics. 

 POST  /vms 
 A JSON formatted 
 according to  Figure 
 2.11. 

 Status code 200 (Success) 
 if the execution was 
 successful. A JSON 
 formatted according to 
 Figure 2.9  . 
 400 (Bad request) if there 
 is any error. 

 Delete the VM (VMid 
 specified in the URL). 
 Note: Does not 
 remove its metrics. 

 DELETE  /vms/:id 
 A JSON formatted 
 according to  Figure 
 2.9  . 

 Status code 200 (Success) 
 if the execution was 
 successful. A JSON 
 formatted according to 
 Figure 2.9  . 
 400 (Bad request) if there 
 is any error. 

 Update the VM’s 
 host binding (VMid 
 and hostid  specified 
 in the URL). 

 PUT 
 /vms/:id/: 
 hostid 

 A JSON formatted 
 according to  Figure 
 2.9  . 

 Status code 200 (Success) 
 if the execution was 
 successful. A JSON 
 formatted according to 
 Figure 2.10  . 
 400 (Bad request) if there 
 is any error. 

 Delete the VM’s host 
 binding (VMid and 
 hostid  specified in 
 the URL). 

 DELETE 
 /vms/:id/: 
 hostid 

 A JSON formatted 
 according to Figure 
 2.9. 

 Status code 200 (Success) 
 if the execution was 
 successful. A JSON 
 formatted according to 
 Figure 2.10  . 
 400 (Bad request) if there 
 is any error. 

 Get all the Hosts, 
 states and most 
 recent metrics. 

 GET  /hosts 
 A JSON formatted 
 according to  Figure 
 2.9  . 

 Status code 200 (Success) 
 if the execution was 
 successful. An array 
 version of JSON 
 formatted according to 
 Figure 2.12  . 
 400 (Bad request) if there 
 is any error. 

 Get the Host’s state 
 and most recent 
 metrics (Host id 
 specified in the URL). 

 GET  /hosts/:id 
 A JSON formatted 
 according to  Figure 
 2.9  . 

 Status code 200 (Success) 
 if the execution was 
 successful. A JSON 
 formatted according to 
 Figure 2.12  . 
 400 (Bad request) if there 
 is any error. 
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 Add a Host and its 
 state and initial 
 metrics. 

 POST  /hosts 
 A JSON formatted 
 according to  Figure 
 2.12  . 

 Status code 200 (Success) 
 if the execution was 
 successful. A JSON 
 formatted according to 
 Figure 2.9  . 
 400 (Bad request) if there 
 is any error. 

 Delete the Host 
 (Host id specified in 
 the URL). Note: Does 
 not remove its 
 metrics. 

 DELETE  /hosts/:id 
 A JSON formatted 
 according to  Figure 
 2.9  . 

 Status code 200 (Success) 
 if the execution was 
 successful. A JSON 
 formatted according to 
 Figure 2.9  . 
 400 (Bad request) if there 
 is any error. 

 Get the metrics of an 
 object (VM or Host). 

 GET  /metrics 
 A JSON formatted 
 according to  Figure 
 2.13  . 

 Status code 200 (Success) 
 if the execution was 
 successful. An array 
 version of JSON 
 formatted according to 
 Figure 2.14  . 
 400 (Bad request) if there 
 is any error. 

 Add metrics to an 
 object (updates the 
 object’s most recent 
 metrics as well) 

 POST  /metrics 
 A JSON formatted 
 according to  Figure 
 2.15  . 

 Status code 200 (Success) 
 if the execution was 
 successful. A JSON 
 formatted according to 
 Figure 2.9  . 
 400 (Bad request) if there 
 is any error. 

 Table 2.1:  API that defines the endpoints of the  Database Manager 

 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "type":  "object", 
 "properties":  {  }, 

 } 

 Figure 2.9  : JSON Schema for fetching/removing objects. 

 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "type":  "object", 
 "properties":  { 
 "VMID":  {  "type":  "string"  }, 
 "HostID":  {  "type":  "string"  }, 
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 }, 
 "required":  ["VMID",  "HostID"] 

 } 

 Figure 2.10  : JSON Schema for setting scheduler and  classifier on MLServer. 

 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "type":  "object", 
 "properties":  { 
 "vmid":  { 
 "type":  "string" 

 }, 
 "stateid":  { 
 "type":  "integer" 

 }, 
 "deployed":  { 
 "type":  "boolean" 

 }, 
 "hostid":  { 
 "type":  "string" 

 }, 
 "hoststateid":  { 
 "type":  "integer" 

 }, 
 "total_cpu":  { 
 "type":  "number" 

 }, 
 "total_memory":  { 
 "type":  "number" 

 }, 
 "usage_cpu":  { 
 "type":  "number" 

 }, 
 "usage_memory":  { 
 "type":  "number" 

 }, 
 "disk_read":  { 
 "type":  "number" 

 }, 
 "disk_write":  { 
 "type":  "number" 

 }, 
 "netrx":  { 
 "type":  "number" 

 }, 
 "nettx":  { 
 "type":  "number" 

 } 
 }, 
 "required":  ["vmid",  "stateid",  "deployed",  "hostid",  "hoststateid", 

 "total_cpu",  "total_memory",  "usage_cpu",  "usage_memory",  "disk_read", 
 "disk_write",  "netrx",  "nettx"], 
 } 

 Figure 2.11  : JSON Schema for VM information. 
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 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "type":  "object", 
 "properties":  { 
 "hostid":  { 
 "type":  "string" 

 }, 
 "stateid":  { 
 "type":  "integer" 

 }, 
 "total_cpu":  { 
 "type":  "number" 

 }, 
 "total_memory":  { 
 "type":  "number" 

 }, 
 "usage_cpu":  { 
 "type":  "number" 

 }, 
 "usage_memory":  { 
 "type":  "number" 

 }, 
 "disk_read":  { 
 "type":  "number" 

 }, 
 "disk_write":  { 
 "type":  "number" 

 }, 
 "netrx":  { 
 "type":  "number" 

 }, 
 "nettx":  { 
 "type":  "number" 

 }, 
 "vms":  { 
 "type":  "integer" 

 }, 
 "energy_usage":  { 
 "type":  "number" 

 } 
 }, 
 "required":  ["hostid",  "stateid",  "total_cpu",  "total_memory", 

 "usage_cpu",  "usage_memory",  "disk_read",  "disk_write",  "netrx",  "nettx", 
 "vms",  "energy_usage"], 
 } 

 Figure 2.12  : JSON Schema for Host information. 

 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "type":  "object", 
 "properties":  { 
 "hostid":  { 
 "type":  "string" 

 }, 
 "metrictype":  { 
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 "type":  "integer" 
 "description":  "0  for  host,  1  for  VM" 

 }, 
 "since":  { 
 "type":  "integer" 
 "description":  "time  to  fetch  from  then  until  now  in  nanoUnixTime" 

 }, 
 "count":  { 
 "type":  "integer" 
 "description":  "max  number  of  entries  to  fetch" 

 } 
 }, 
 "required":  ["hostid",  "metrictype",  "since",  "count"] 

 } 

 Figure 2.13  : JSON Schema for fetching metrics. 

 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "title":  "Metric", 
 "type":  "object", 
 "properties":  { 
 "timestamp":  { 
 "type":  "string", 
 "format":  "date-time" 

 }, 
 "cpu":  { 
 "type":  "number" 

 }, 
 "memory":  { 
 "type":  "number" 

 }, 
 "disk_read":  { 
 "type":  "number" 

 }, 
 "disk_write":  { 
 "type":  "number" 

 }, 
 "netrx":  { 
 "type":  "number" 

 }, 
 "nettx":  { 
 "type":  "number" 

 }, 
 "energy_usage":  { 
 "type":  "number" 

 } 
 }, 
 "required":  ["timestamp",  "cpu",  "memory",  "disk_read",  "disk_write", 

 "netrx",  "nettx",  "energy_usage"], 
 } 

 Figure 2.14  : JSON Schema for metrics. 
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 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "type":  "object", 
 "properties":  { 
 "id":  { 
 "type":  "string" 

 }, 
 "metrictype":  { 
 "type":  "integer" 
 "description":  "0  for  host,  1  for  VM" 

 }, 
 "timestamp":  { 
 "type":  "string", 
 "format":  "date-time" 

 }, 
 "cpu":  { 
 "type":  "number" 

 }, 
 "memory":  { 
 "type":  "number" 

 }, 
 "disk_read":  { 
 "type":  "number" 

 }, 
 "disk_write":  { 
 "type":  "number" 

 }, 
 "netrx":  { 
 "type":  "number" 

 }, 
 "nettx":  { 
 "type":  "number" 

 }, 
 "energy_usage":  { 
 "type":  "number" 

 } 
 }, 
 "required":  ["id",  "metrictype","timestamp",  "cpu",  "memory",  "disk_read", 

 "disk_write",  "netrx",  "nettx",  "energy_usage"] 
 } 

 Figure 2.15  : JSON Schema for adding metrics. 

 AI-O Frontend Controller 

 The JSON schema of the data sent and returned for communication between AI-Enabled 
 Orchestrator and cloud-edge manager through an endpoint with REST API remained 
 similar as reported in  Deliverable D4.1  . 

 AI-O ML Server 

 The following examples describe JSON schemas (  Figure  2.16-2.18  ) and attributes (shown in 
 Table 2.2) of the data sent to the MLServer  /place  API and the expected return, 
 respectively: 
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 Action  Verb  Endpoint  Request Body  Response 

 Request a placement 
 plan for a PENDING 
 Serverless Runtimes 

 POST  /api/place 

 JSON representation 
 of the VM associated 
 with pending 
 Serverless Runtime 
 services and the list 
 of viable HOSTs. 

 Status code 200 
 (Success) if the 
 execution was 
 successful. A JSON with 
 information about the 
 placement is returned. 
 400 (Bad request) if 
 there is any error. 

 Set the scheduling 
 model for placement 
 requests. 

 POST  /api/scheduler 
 JSON with model 
 name. 

 Status code 200 
 (Success) if the 
 execution was 
 successful. A JSON with 
 information about the 
 placement is returned. 
 400 (Bad request) if 
 there is any error. 

 Set the classifier 
 model for estimating 
 VM resource usage. 

 POST  /api/classifier 
 JSON with model 
 name. 

 Status code 200 
 (Success) if the 
 execution was 
 successful. A JSON with 
 information about the 
 placement is returned. 
 400 (Bad request) if 
 there is any error. 

 Table 2.2  : Attributes between ML server and AI-O communication 

 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "type":  "object", 
 "properties":  { 

 "VM_ATTRIBUTES":  { 
 "type":  "object", 
 "properties":  { 
 "GNAME":  {  "type":  "string"  }, 
 "UNAME":  {  "type":  "string"  } 

 }, 
 "required":  ["GNAME",  "UNAME"] 

 }, 
 "CAPACITY":  { 
 "type":  "object", 
 "properties":  { 
 "CPU":  {  "type":  "number"  }, 
 "DISK_SIZE":  {  "type":  "number"  }, 
 "MEMORY":  {  "type":  "number"  } 

 }, 
 "required":  ["CPU",  "DISK_SIZE",  "MEMORY"] 

 }, 
 "HOST_IDS":  { 
 "type":  "array", 
 "items":  {  "type":  "integer"  } 

 }, 
 "ID":  {  "type":  "integer"  }, 
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 "STATE":  {  "type":  "string"  } 
 }, 
 "required":  ["HOST_IDS",  "ID"] 

 } 

 Figure 2.16  : JSON Schema for AI-O Frontend to ML Server  communication 

 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "type":  "object", 
 "properties":  { 
 "ID":  {  "type":  "integer"  }, 
 "HOST_ID":  {  "type":  "integer"  } 

 }, 
 "required":  ["ID",  "HOST_ID"] 

 } 

 Figure 2.17  : JSON Schema for MLServer to AI-O Frontend  communication 

 The following examples describe a JSON schema of the data sent to the MLServer 
 /classifier  and  /schedule  API, including descriptions  of the different classifiers and 
 schedulers available. Also, Table 2.3 describes the models for the workload 
 characterization and Table 2.4 indicates the models for the scheduler, respectively. 

 { 
 "$schema":  "http://json-schema.org/draft-07/schema#", 
 "type":  "object", 
 "properties":  { 
 "model_name":  {  "type":  "string"  }, 

 }, 
 "required":  ["model_name"] 

 } 

 Figure 2.18  : JSON Schema for setting scheduler and  classifier on MLServer. 

 Name  Description 
 RandomClassifier  Randomly generates the  for the VM.  𝑉 

 𝑟 
 𝑗 

 DLIR  Calculates the  from the intermediate representation  of the  𝑉 
 𝑟 

 𝑗 

 AutoEncoder trained for IDEC. 
 DLClassifier  Calculates the  from the distance to classes  using IDEC.  𝑉 

 𝑟 
 𝑗 

 ClassicalClassifier  Calculates the  from the distance to classes  using MC2PCA.  𝑉 
 𝑟 

 𝑗 

 Table 2.3  : Models for the workload characterization 
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 Name  Description 
 RandomScheduler  Schedules the VM on a random host in the valid host list. 
 InteferenceAwareScheduler  Schedules VM using Interference-Aware Scheduling. Selecting the 

 optimal host by minimizing  through using  the  𝐷 
 𝑚𝑎𝑥 

 𝐷 
 𝑔𝑟𝑒𝑒𝑛  ℎ 

 𝑖 

 distance metrics. 

 Table 2.4  : Models for the scheduler 

 Formal models for an energy-aware continuum systems 

 At present few formal models of federated Cloud–Edge systems exist—and none 
 adequately represent and integrate energy considerations (e.g., multiple providers, 
 renewable energy sources, pricing, and the need to balance consumption over large-areas 
 with other non-Cloud consumers, etc.) 

 Energy-aware task migration may initially appear to be a straightforward process, but in 
 production environments it can become extremely complex; effective placement requires 
 intelligent decision-making while taking into account multiple factors including energy 
 providers, energy policies, energy pricing, resource availability, SLO arbitration, etc. This is 
 further exacerbated by the dynamic nature of Cloud–Edge environments, which are highly 
 dynamic, mobile and complex, and above all seen as critical infrastructure that should not 
 suffer from serious disruption. 

 It is therefore vital that new algorithms, mechanisms and methods to improve energy 
 utilisation in the Cloud Continuum are grounded on formal scientific models that identify 
 and support the huge range of providers, heterogeneous components, interactions, 
 stochastic properties, (potentially contradictory) service-level agreements, pricings, and 
 contractual requirements present in both energy and Cloud–Edge systems. 

 Figure 2.19:  A high-level model for energy-aware  Continuum systems 
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 Through COGNIT, we have developed an initial high-level model for task placement in a 
 Continuum context, published in [8]. In this work, we propose a perspective model for 
 energy-aware Continuum systems as shown above in  Figure  2.19  . 

 This has served as one of the foundations for our work into interference-aware scheduling; 
 we plan to develop the model and work further going forward. As a further example, we 
 have developed a sequence diagram to illustrate workload execution for six energy 
 scenarios, shown in  Figure 2.20  . 

 Figure 2.20:  Sequence diagram for potential workload  placement in energy scenarios 

 Interference-Aware Scheduling 

 The first version of the AI-O employs interference-aware scheduling, which has been 
 shown to decrease energy consumption without compromising application performance 
 [7]. The objective of interference-aware scheduling is to minimise contention of hardware 
 resources on the hosts. We carry out this by trying to equalise the resource consumption 
 of the individual hardware resources among all hosts, in turn distributing similar workloads 
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 among the hosts. In principle, picking the host where adding the VM’s resource usage 
 would minimise the distance between the hosts’ resource utilisation. 

 Interference-Aware Scheduling: 

 ●  Let  be the set of hosts.  𝐻 = { ℎ 
 1 
,  ℎ 

 2 
,  … ,  ℎ 

 𝑛 
}

 ●  Let  be the set of resources  (CPU, memory, etc).  𝑅 =  𝑟 
 1 
,  𝑟 

 2 
,  … ,  𝑟 

 𝑚 { }
 ●  Let  be the utilisation of resource  at host  .  𝑈 

 ℎ 
 𝑖 
 𝑟 

 𝑗 

    𝑟 
 𝑗 

 ℎ 
 𝑖 

 ●  Let  be the resource demand of the VM for  resource  .  𝑉 
 𝑟 

 𝑗 

 𝑟 
 𝑗 

 ●  Let  be the distance measure for host  .  𝐷 
 ℎ 

 𝑖 

 ℎ 
 𝑖 

 We are trying to minimise: 

 (12)  𝐷 
 𝑚𝑎𝑥 

=  𝑚𝑎𝑥    ( 𝐷 
 ℎ 

 1 

,  𝐷 
 ℎ 

 2 

,  … ,  𝐷 
 ℎ 

 𝑛 

)   

 To calculate  we use:  𝐷 
 ℎ 

 𝑖 

 (13)  𝐷 
 ℎ 

 𝑖 

=    
 𝑗 = 1 

 𝑚 

∑  𝑈 
 ℎ 

 𝑖 
 𝑟 

 𝑗 

+  𝑉 
 𝑟 

 𝑗 
( ) −  𝑈 

 𝑟 
 𝑗 

|
|
|

|
|
|

 where  denotes the average utilisation  of resource  across all hosts.  𝑈 
 𝑟 

 𝑗 

    𝑟 
 𝑗 

 To calculate  we need  , this  requires an understanding of the resource consumption  𝐷 
 ℎ 

 𝑖 

 𝑉 
 𝑟 

 𝑗 

 of each VM. However, having the user specify the utilisation manually is inconvenient and 
 potentially error-prone. Thus, we are instead inferring it from the historical resource usage 
 of the VMs. We employ the workload characterization (see Section SR5.1) that provides 
 the foundation of each class of workloads and representation. For example, calculating a 
 VM’s distance to each of the classes gives us a proxy for its resource utilisation, assuming 
 the classes represent distinct types of resource utilisation (e.g., CPU, memory, networks). 
 If we have three classes (  ) for  the classifier we get that  ,  𝑐 

 1 
,  𝑐 

 2 
,  𝑐 

 3 
 𝑅 = { 𝑑 ( 𝑐 

 1 
),  𝑑 ( 𝑐 

 2 
),  𝑑 ( 𝑐 

 3 
)}

 where the function  measures the distance to the  center of the cluster.  𝑑 

 Similarly, the intermediate representation of the Auto-Encoder (AE) should represent the 
 resource utilisation of the VM. These are not directly representative of the typical 
 resource metrics, such as CPU and memory, but we are exploring methods to correlate 
 them to these metrics. For example, by looking at the change in resource utilisation at the 
 host when deploying VMs with known vectors one can estimate the effect of each vector 
 index relative to the host resources, thus giving us scalars from VM vectors to traditional 
 metrics such as CPU. If we have the traditional metrics,  and the  𝑅 

 𝑡𝑟𝑎𝑑 
=  𝑟 

 1 
,  𝑟 

 2 
,  … ,  𝑟 

 𝑚 { }
 classifier metrics,  then we plan to be able to estimate the  𝑅 

 𝑐𝑙𝑎𝑠𝑠 
= { 𝑑 ( 𝑐 

 1 
),  𝑑 ( 𝑐 

 2 
),  𝑑 ( 𝑐 

 3 
)}

 scalars  to go from  to  by  .  𝑆 
 𝑖 

= { 𝑠 
 1  𝑟 

 𝑖 

,     𝑠 
 2  𝑟 

 𝑖 

,  𝑠 
 3  𝑟 

 𝑖 

}  𝑅 
 𝑐𝑙𝑎𝑠𝑠 

 𝑅 
 𝑡𝑟𝑎𝑑 

 𝑟 
 𝑖 

=  𝑠 
 1  𝑟 

 𝑖 

*  𝑐 
 1 

+     𝑠 
 2  𝑟 

 𝑖 

*  𝑐 
 2 

+     𝑠 
 3  𝑟 

 𝑖 

*  𝑐 
 3 

 As this reverse lookup of metrics has yet to be developed our initial version of the 
 Interference-Aware Scheduler does not schedule based on traditional metrics, e.g., CPU. 
 Instead, it balances the host workload by evenly scheduling either the different cluster 
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 classes, or the vector from the intermediate representation of the AE. However, this 
 requires historical data on the VM’s resource usage. To circumvent this the VMs are tagged 
 with a flavour, allowing us to estimate the typical/average consumption of that flavour and 
 can thus be used for initial placement. Flavours without historical data can either be 
 estimated using the most common VM resource usage, a randomised resource profile, or 
 an average resource profile. Then, once the VM/flavour has been properly classified it can 
 be rescheduled accordingly. 

 This approach is easily extended to consider further optimization criteria. For example, the 
 first iteration of the scheduler includes a green-energy optimizer. Scaling a VM’s resource 
 usage relative to a host’s green-energy availability will prioritise deploying on the hosts 
 provided with more green energy. This gives us an easily tunable parameter for optimising 
 green-energy utilisation in the system. Similarly, though not yet developed, we could for 
 example penalise deployments on over-allocated hosts, particularly important for 
 heterogeneous environments. 

 Green-energy adjustment of  :  𝐷 
 ℎ 

 𝑖 

 ●  Let  give the green energy percentage of  the host  𝑔 ( ℎ 
 𝑖 
)

 ●  Let  be the green-energy scalar  𝑠 
 𝑔𝑟𝑒𝑒𝑛 

 (14)  𝐷 
 𝑔𝑟𝑒𝑒𝑛  ℎ 

 𝑖 

=     𝐷 
 ℎ 

 𝑖 

+  𝐷 
 ℎ 

 𝑖 

*  1 −  𝑔  ℎ 
 𝑖 ( )( ) *     𝑠 

 𝑔𝑟𝑒𝑒𝑛 

 This could be extended to any arbitrary cost function  as such, allowing for smarter  𝐹 
 scheduling in the future: 

 (15)  𝐷 
 𝑔𝑟𝑒𝑒𝑛  ℎ 

 𝑖 

=     𝐷 
 ℎ 

 𝑖 

+  𝐹 ( 𝑔 
 ℎ 

 𝑖 

,  𝐷 
 ℎ 

 𝑖 

,  … )
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 [SR5.3] Scheduling Mechanisms 

 It became clear in this cycle that COGNIT needs a way to notify the AI-Enabled 
 Orchestrator that a particular Serverless Runtime has been updated, which can be 
 achieved thanks to the work performed in SR3.1 (see Deliverable D3.2). 

 The mechanism used to implement this notification is the OpenNebula reschedule 
 functionality. When a Virtual Machine is in the running or power-off state, it can be 
 rescheduled to a different host by enabling (through the API) a rescheduling action over 
 this particular VM. In the next scheduling interval, the VM will be considered by the 
 OpenNebula scheduler for a rescheduling action, and thanks to the work in SR5.3 
 presented in D4.1, all the VMs subject to be scheduled or rescheduled are delegated to the 
 AI-Enabled Orchestrator. 

 This SR has been improved in the context of the Provisioning Engine development (SR3.1), 
 since the reschedule action is automatically triggered by the Provisioning Engine on any 
 update of a Serverless Runtime, that potentially can change the VM characteristics in a 
 way the merits a migration of hypervisor for the SR. 
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 3. Energy-efficiency optimization and sustainability 

 The availability of renewable energy is in many locations intermittent and varies based on 
 the regional or local energy mix, time of day, and season. For some renewable energy 
 sources, such as solar and in particular wind, the supply could fluctuate significantly 
 throughout the day and be hard to predict. Scheduling workloads based on availability of 
 renewable energy in a continuum, or a cloud-edge federation, therefore requires some 
 degree of flexibility in either where the workload can be processed, or when. 

 In the cloud-edge continuum, the provisioning of  compute resources in different locations 
 can be planned ahead of time in anticipation of renewable energy availability, to increase 
 the share of renewable energy. The cloud-edge continuum therefore presents both 
 opportunities and challenges for integrating renewable energy sources to ensure low cost 
 and sustainability. 

 Challenges for integrating and increasing the share of renewable energy in the 
 cloud-edge continuum 

 One of the  first challenges  is knowing whether a specific  cloud or edge cluster is using 
 green energy. Current approaches usually consider the energy mix in the regional power 
 grid over a time period, and apply carbon accounting methods based on that. There are 
 services (e.g., model as a service) for predicting and estimating renewable energy supply in 
 advance that could be used for capacity planning. However, the situation is more 
 complicated when taking local microgrids and energy storage into consideration - these 
 are very different from the national power grid. 

 It is common to predict the availability of renewable energy day-ahead (24 hours 
 prediction), which can be updated throughout the day. Given such a prediction for the 
 availability of renewable energy in different locations, the next challenge is planning the 
 compute capacity in different cloud or edge clusters to match the patterns of renewable 
 energy supply. This involves predicting the future workloads, or computing demand, for 
 the next period e.g. next 24 hours, to plan the infrastructure capacity. Since workloads 
 differ in terms of requirements, it is important to take this into consideration, balancing 
 for example latency requirements and other location-based policies or restrictions, with 
 energy-efficiency and renewable energy utilisation. 

 Grid congestion, i.e., when electricity demand exceeds the capacity of the grid, is another 
 challenging issue - for example the electricity could have been used for other purposes 
 (such as producing green steel). 

 Predicting resource demand in the cloud-edge continuum 

 From the perspective of the AI-Enabled Orchestrator, one of the major challenges is to 
 predict future compute resource demands to plan for infrastructural needs, such as 
 provisioning new cloud or edge resources.  This requires balancing requirements such as 
 low latency and location-based policies with energy efficiency and demand for renewable 
 energy utilisation. One solution to this problem is to collect historical data of 
 computational resource usage and detect patterns such as peak load, and then let users 

 Version 1.0  30 April 2024  Page  37  of  43 



 SovereignEdge.Cognit–101092711  D4.2 COGNIT Serverless Platform - Scientific Report - b 

 set a threshold for how much the system should be over-provisioned. However, 
 over-provisioning may unfortunately decrease the energy efficiency as well as result in 
 increased costs. On the other hand, allocating too few resources may result in an SLA 
 violation or poor performance [9]. 

 To find the right balance and add flexibility, users could be allowed to define boundaries 
 on how much they are willing to compromise on SLA requirements to prioritise renewable 
 energy usage. For instance, a developer could set a limit that a particular application could 
 tolerate up to 100 ms latency and then set a rule to prioritise renewable energy. In this 
 scenario, an edge cluster running on renewable energy would be chosen if it meets the 
 latency threshold of 100 ms, even if there is another non-renewable powered edge cluster 
 offering lower latency. 

 Another option could be to set a limit and boundaries on how long a particular function 
 call can be delayed. In some scenarios, such as when offloading an emergency response 
 function to detect wildfires, it is crucial that the computation is executed promptly. 
 However, in other cases, such as federated learning or fine-tuning machine learning 
 models, computations could perhaps be postponed until they can be executed on a cluster 
 powered by renewable energy. 

 One challenge is that provisioning new clusters may take time, which means that the AI-O 
 needs to accurately predict the total computational demand for the upcoming period, such 
 as the next hours, and also recommend when certain clusters need to be decommissioned. 
 Automatically scaling and provisioning cloud resources has been extensively studied in 
 previous work, e.g., for time-sensitive loads [10], carbon-aware day-ahead virtual capacity 
 planning using forecasts of inflexible and flexible loads and load shaping [15, 16]. 
 However, in the context of a cloud-edge continuum to provision new edge clusters remains 
 an open challenge, in particular considering balancing renewable energy and SLAs. 

 Energy-efficient resource management and scheduling 

 Once the virtual infrastructure has been provisioned, incoming workloads should be 
 scheduled for processing at the different cloud/edge locations and hosts. This problem 
 operates on smaller time scales than the planning of virtual compute capacity. There are a 
 number of things to take into consideration: 

 ●  The power use of a server scales according to its CPU utilisation, as a quadratic 
 function of its frequency, and is often around 30 % of maximum power in idle 
 mode. For most cloud servers, the sweet spot for performance/power ratio is at 
 around 70 % to 80 % CPU utilisation [11]. 

 ●  On the other hand, the power needed for cooling goes up with server 
 loads/utilisation, and depends non-linearly on the power used by the server. It is 
 generally much more difficult to model. 

 Holistic resource management is an approach to schedule workloads that improve 
 energy-efficiency from a system perspective, without sacrificing Quality of Service (QoS) 
 and Service Level Agreements (SLAs). That is, to place workloads to jointly optimise both 
 1) the performance/power ratio of the server equipment, and 2) the energy used by the 
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 cooling system. In holistic resource management, the aim is therefore to consolidate and 
 move workloads between hosts to optimise the overall energy usage of a data center. The 
 objective function for the optimization may include terms for total energy use, renewable 
 energy utilisation, QoS measures, and SLA violations. 

 In [12], they formulate an optimization problem with the objective to minimise the amount 
 of non-renewable energy usage, assuming that workloads belong to one of two 
 categories:  interactive  (latency-critical) and  batch  (that can be deferred to a later time). To 
 match renewable energy supply with server loads, they defer batch jobs to times of higher 
 renewable energy supply. 

 The approach of [11] uses a Gated Graph Convolution Network to score candidate 
 scheduling decisions based on three inputs: 1) the candidate matching between workloads 
 and hosts, 2) task dependencies (they modelled a job as a collection of tasks), and 3) host 
 thermal characteristics. The score is a weighted sum of average normalised energy 
 consumption, average normalised temperature and ratio of job SLA violations. To reduce 
 computational complexity, the scheduling decision only considers the K most power 
 hungry tasks and the K most energy-efficient hosts at each scheduling iteration. In a 
 subsequent work, the Gated Graph Convolution Network was replaced with a 
 Convolutional Neural Network [13]. 

 In [17], the utilisation rate of the servers is jointly optimised with the control of the cooling 
 system to minimise energy usage, using reinforcement learning. The inputs were server 
 load, server outlet temperatures, and the duration and load of the different jobs. The 
 reward function considered the power usage of the cooling system, the ratio of dropped 
 jobs, and a penalty for exceeding a cold aisle temperature of 27 degrees Celsius. 

 The operation of an edge node is optimised in a microgrid setting with onsite renewable 
 energy generation and a battery storage for electricity in [14], taking into account the 
 battery state of charge and renewable energy supply forecasts. 

 These approaches either assume that the temperatures can be measured, or estimated 
 using a simplified physical model of the system, and that the energy used for the cooling 
 system can be directly calculated from these temperature measurements or estimates. 
 Energy modelling and optimization in the cloud-edge continuum is highly challenging 
 since: 

 ●  The hardware, server configurations, and cooling system characteristics are highly 
 heterogeneous in the cloud-edge continuum. The energy models need to be 
 adapted to each cloud or edge site. 

 ●  The cooling systems are operated by the infrastructure providers. In a federated 
 cloud-edge continuum, the meta-orchestrator making the scheduling decisions will 
 not be able to directly control the cooling system. 
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 4. Conclusions and future work 

 The Cloud-Edge Manager and AI-Enabled Orchestrator components have undergone 
 significant development since the M9 (September 2023) implementation. This report 
 describes the components in detail, and discusses the changes and improvements that 
 have been made. Specifically, the Cloud-Edge Manager now deploys Serverless Runtimes 
 across a real federated environment (testbeds located at RISE in Sweden and OpenNebula 
 in Spain), and has been augmented with improved mechanisms to report service readiness. 
 Additionally, the Cloud-Edge Manager now has the ability to report two new classes of 
 metrics that are seen as essential for intelligent orchestration in the Cloud Continuum: 
 geo-location metrics (to assist in delivering low-latency) and virtual machine energy 
 metrics (to improve energy efficiency and use of renewable resources across the 
 Continuum). 

 This work feeds into the AI-Enabled Orchestrator component, which subsequent to  M9 is 
 now fully integrated with the Cloud-Edge Manager. In part using the newly available 
 energy and geo-location metrics, significant work has been performed on unsupervised 
 learning methods - seen as essential to provide predictive analytics in environments that 
 lack labelled data. A model repository has been developed, and two unsupervised learning 
 methods have been implemented: MC2PCA and IDEC; this report describes these methods 
 in detail. Importantly, the ability to reschedule Serverless Runtimes is now available within 
 the Orchestrator - this enables the movement and continued orchestration of existing 
 runtimes, rather than the static deployments that existed in M9. Finally, to improve the 
 reasoning capability of COGNIT, work has been performed and published to develop 
 formal models for an energy-aware Cloud Continuum; this will form the basis going 
 forward for more performant and efficient deployment strategies with a particular focus 
 on energy. Currently this has informed our work on interference-aware scheduling. 

 To reduce the energy use of, and the amount of non-renewable energy used by, the 
 cloud-edge continuum, it is important to predict compute demand and how it can be 
 scheduled over time and across locations, and proactively adapt the compute capacity 
 accordingly. Measures need to be implemented to: 

 ●  Identify the most energy efficient of the participating edge clusters (possibly 
 depending on the specific application/workload). 

 ●  Use forecasts of local availability (and carbon intensity) of renewable energy (both 
 from the grid and on-site), to produce forecasts of available compute capacity 
 running on renewable energy, across locations. Both grid and on-site energy supply 
 and energy storage solutions need to be considered and optimised. 

 ●  Forecast the compute demands and dependencies of applications, across time and 
 space. 

 ●  Proactively schedule the workloads and infrastructure to pair workloads with the 
 right hosts, to improve system-level energy performance. 

 ●  More research is needed to understand how data centers can participate in the 
 local energy markets to reduce grid congestion and improve overall grid resiliency 
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 and reduce system-wide carbon emissions, including monitoring of, and 
 participation in, smart grid initiatives and standardisation. 

 In summary, to enable grid-aware computing, and promote data centers as active 
 participants in future grid services, a holistic approach is needed to better adapt the 
 current datacenter energy systems to developing standard energy market frameworks. It 
 is necessary to investigate which grid services that datacenters should target, and develop 
 interoperability frameworks for the multi-provider cloud-edge continuum based on local 
 regulations and energy mix, as well as integrating their current Energy Management 
 Systems (EMS) with local flexibility market operators and service platforms. Last, but not 
 least, a sustainability assessment framework and methodology is needed to critically 
 evaluate the above, given the local dynamics of carbon intensity and energy mix. 

 The COGNIT Project aims to contribute to all these points in the coming research and 
 innovation cycles, with a special focus on the challenges associated with energy efficiency 
 optimization and smart placement by enabling AI/ML models across the cloud-edge 
 continuum. 
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