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Abstract

COGNIT is an Al-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
Continuum that enables the seamless, transparent, and trustworthy integration of data
processing resources from providers and on-premises data centers in the cloud-edge
continuum, and their automatic and intelligent adaptation to optimise where and how
data is processed according to application requirements, changes in application demands
and behaviour, and the operation of the infrastructure in terms of the main environmental
sustainability metrics. This document describes the research and development carried out
in WP4 “Al-enabled Distributed Serverless Platform and Workload Orchestration” during
the First Research & Innovation Cycle (M4-M9), providing details on the status of a number
of key components of the COGNIT Framework (i.e. Cloud-Edge Manager and Al-Enabled
Orchestrator) as well as reporting the work related to supporting Energy Efficiency
Optimization in the Multi-Provider Cloud-Edge Continuum.
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Executive Summary

This is the first version of Deliverable D4.1, the COGNIT Serverless Platform Scientific
Report, produced in WP4 “Al-enabled Distributed Serverless Platform and Workload
Orchestration”. It describes in detail the progress of the software requirements that have
been active during the First Research & Innovation Cycle (M4-M9) in connection with these
main components of the COGNIT Framework:

Cloud-Edge Manager

e SR4.3 Serverless Runtime Deployment:

Deploy Serverless Runtime as Virtualized Workloads (e.g. Containers or
VMs/microVMs) on the cloud-edge infrastructure.

e SR4.4 Metrics, Monitoring, Auditing:

Edge-Clusters monitoring, Serverless Runtimes metrics collection and
continuous security assessment.

e SRA4.5 Authentication & Authorization:

Authentication and authorization mechanisms for accessing cloud-edge
infrastructure resources by the devices for offloading workloads.

Al-Enabled Orchestrator

e SR5.1Building Learning Model:

Implement Al/ML model based on collected metrics from Edge Cluster entities
and serverless runtimes deployed across the distributed cloud-edge continuum.

e SR5.2 Smart Deployment of Serverless Runtimes:

Implement a Smart Workload Orchestrator (SWO) that exposes a REST API
used by the Cloud-Edge Manager for requesting the deployment plans used for
provisioning the Serverless Runtimes.

e [NEW] SR5.3 Scheduling Mechanisms:

Implement a scheduler that will place the Serverless Runtimes on the
Edge-Clusters resources according to the deployment plan provided by the
Al-Enabled Orchestrator.

This deliverable has been released at the end of the First Research & Innovation Cycle
(M9), and will be updated with incremental releases at the end of each research and
innovation cycle (i.e. M15, M21, M27, M33).

Version 1.0 31 October 2023 Page 3 of 44



SovereignEdge.Cognit=101092711 D4.1 COGNIT Serverless Platform - Scientific Report - a

Table of Contents

Abbreviations and Acronyms 5
1. Cloud-Edge Manager 6
[SR4.3] Serverless Runtime Deployment 6
[SR4.4] Metrics, Monitoring, Auditing 10
[SR4.5] Authentication & Authorization 14
2. Al-Enabled Orchestrator 17
[SR5.1] Building Learning Models 17
[SR5.2] Smart Deployment of Serverless Runtimes 27
[SR5.3] Scheduling Mechanisms 29
3. Energy Efficiency Optimization in the Multi-Provider Cloud-Edge Continuum 36
Preliminary research on energy efficiency optimization 36
Prototype of energy efficiency optimization for cloud-edge orchestration 42

Version 1.0 31 October 2023 Page 4 of 44



SovereignEdge.Cognit-101092711

D4.1 COGNIT Serverless Platform - Scientific Report - a

Abbreviations and Acronyms

Al Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Services

DaaS Data as a Service

DB Database

Faas Function as a Service

GPU Graphics Processing Unit

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management system

IP Internet Protocol

loT Internet of Things

JSON Javascript Object Notation

ML Machine Learning

(01 Operating System

QoS Quality of Service

REST Representational State Transfer

S3 Simple Storage Service

SDK Software Development Kit

SLA Service Level Agreement

SQL Structured Query Language

VM Virtual Machine

YAML Yaml Ain’t a markup language
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1. Cloud-Edge Manager

The Cloud-Edge Manager is responsible for managing the cloud-edge continuum
infrastructure and performing actions to manage the lifecycle of the different Serverless
Runtimes, collecting their metrics and monitoring the infrastructure resources they use.

The main responsibilities of the Cloud-Edge Manager are, thus:

e Exposing through an API the operations for managing the cloud-edge continuum
infrastructure (i.e. physical computational hosts, networks and storages across
multi-cloud providers and edge locations) and managing the Serverless Runtimes,
that are used by the Al-Enabled orchestrator to optimise the execution of the
applications based on the requirements sent by the device.

e Monitoring both the cloud-edge infrastructure and the Serverless Runtimes to
provide the Al-Enabled Orchestrator with information to implement automatic and
intelligent adaptation for the placement of the Serverless Runtimes .

e Providing authentication and authorization mechanisms for accessing and securing
resources such as physical hosts, virtual machines, networks, services, etc.

[SR4.3] Serverless Runtime Deployment

Description

The Serverless Runtime is the main management unit of the COGNIT Framework. It is
defined by a document (a JSON file) that conveys all the information for its automatic
deployment on the distributed cloud-edge continuum. The document containing the
requirements is sent by the Device Client to the Provisioning Engine that communicates
with the Cloud-Edge Manager.

The Cloud-Edge Manager functionality able to manage the lifecycle of Serverless Runtimes
has been implemented using OpenNebula’s OneFlow component?. The Provisioning Engine
communicates with the Cloud-Edge Manager through the Oneflow API to create, read and
delete Serverless Runtimes as required by the devices.

Architecture & Components

OneFlow allows users and administrators to define, execute and manage multi-tiered
applications, called Services, composed of interconnected Virtual Machines with
deployment dependencies between them, and to deploy and manage them as a single
entity. Each group of VMs is called a Role, and can depend on other roles. The OneFlow
component is able to implement elasticity policies; the service can be scaled up or down
depending on the needs, in order to add or remove virtual machines from it. This existing
OpenNebula open source component is leveraged to deploy Serverless Runtimes as a
single entity, even if they are composed of more than one Virtual Machine.

2 https://docs.opennebula.io/stable/installation_and_configuration/opennebula_services/oneflow.html
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To successfully deploy a Serverless Runtime upon request, a new appliance for
OpenNebula clouds has been created. This appliance consists of a Virtual Machine, based
on openSUSE containing the Serverless Runtime software properly configured to run at
start time. This appliance has been created under the name of “FaaS Runtime
7643fF57fca5424dcec427af3077a76a5ccc27637”, referring to the particular commit the
Serverless Runtime has been installed from.

Data Model
The Serverless Runtime consists of two main components:

1. AFunction as a Service (FaaS) Runtime component that allows the execution of
functions on resources of the cloud-edge continuum resources

2. A Data as a Service (DaaS) component that allows uploading data to the Serverless
Runtime exploiting data locality. The DaaS can implement different protocols and
backend storages (e.g. S3, SQL DB, etc.).

Serverless Runtime metadata is stored in two separate locations. One resides in the
Cloud-Edge Manager, defined as OpenNebula OneFlow Services Templates (i.e. JSON files)
where the two roles corresponding to the FaaS and DaaS components and their
dependencies are defined. These Service Templates act as different flavours of the
Services Runtimes; currently we have four different flavours in the COGNIT infrastructure
corresponding to the four different Use Cases. These flavours contain different libraries
that conform to the runtime of the functions that are called by the Device Client when the
Serverless Runtime is running.

The other piece of metadata that defines a Serverless Runtime is provided by the Device
Client when it requests the creation of a Serverless Runtime to the Provisioning Engine.
Both pieces of metadata are then combined by the OneFlow component upon request by
the Provisioning Engine.

The next segment shows a JSON object corresponding to the Service Template for the
Serverless Runtime with the two components, FaaS and DaaS (although the DaaS
component is not going to be deployed, note the cardinality set to 0). This JSON object is
created by the Provisioning Engine and provided to the OneFlow component, requesting it
to merge its contents (vm_template_contents) with the Service Template definition
corresponding to the flavour requested by the Device Client to the Provisioning Engine
(see Deliverable D3.1 for more information on the Provisioning Engine). All device
information, scheduling policies, etc. are provided at the Role level, since the OpenNebula
scheduler (and, therefore, the Al-Enabled Orchestrator) works at the Virtual Machine level
for placement:

"name": "Serverless Runtime",

"deployment": "straight",
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"description": "",
"roles": [
{

"name": "FAAS",

"cardinality": 1,

"elasticity_policies": [],

"scheduled_policies": [],

"vm_template_contents": "CPU=0.44
HOT_RESIZE=[CPU_HOT_ADD_ENABLED=\"VYES\",
MEMORY_HOT_ADD_ENABLED=\"YES\"]
MEMORY_RESIZE_MODE=\"BALLOONING\"

DISK=[ IMAGE_ID=\"5\",

SIZE=\"420\"]

VCPU=3

MEMORY=111

VCPU_MAX= \"6\"

MEMORY_MAX=\"222\"

SCHEDULING: {POLICY: \"energy\", REQUIREMENTS: \"FREECPU > 10\"}
DEVICE_INFO: {LATENCY_TO PE: 100, GEOGRAPHIC_ LOCATION: \"Madrid\"}"

3

{
"name": "DAAS",
"cardinality": 0,
"elasticity_policies": [],
"scheduled_policies": [],
"vm_template_contents": ""
}

1,

JSON object defining a Service Template representing a Serverless Runtime

API & Interfaces

The OpenNebula OneFlow RESTful API is used by the Provisioning Engine to create, read,

and delete the Serverless Runtimes as required by the devices.
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Action Verb Endpoint Response
Create a . Status code 201 (Created) : request
/service_template

Serverless POST /<id>/action was successful and a new resource has
Runtime been created.
Get
information Status code 200 (OK) with a JSON
about the GET /service/<id> representation of the Serverless
Serverless Runtime in the HTTP body.
Runtime

Status code 204 (No content): the
Delete a .
Serverless DELETE /service_template request has been accepted for
RuNtime /<id> processing, but no info in the

response.

Table 1.1. APl used by the Provisioning Engine to create/read/delete Serverless Runtimes
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[SR4.4] Metrics, Monitoring, Auditing

Description

Metrics collected by monitoring systems provide valuable information on the operational
efficiency, resource utilisation and sustainability of data centres and severless
environments. The OpenNebula monitoring system? includes several metrics related to
each compute node involved in the operations managed by an OpenNebula cloud,
including the monitoring of the OpenNebula instance itself.

OpenNebula offers a native integration with the open source solution Prometheus* where,
through its own exporters, it is able to gather all the information and metrics from each
node of the infrastructure. However, these metrics lack data related to the energy

consumption of the system processes.

The monitoring of the COGNIT Framework needs to be able to rely on energy consumption
metrica to detect anomalies and improve energy efficiency.

Analysis

Some tools have been analysed to extract the energy consumption metrics from the Hosts
and virtual environments. The more relevant open source tools found are the following:

e PowerAPI°: middleware toolkit for building software-defined power metres,
focused on Host energy consumption with some extensions for VM energy

consumption monitoring.

e Scaphandre®: metrology agent dedicated to energy power consumption metrics,
more focused on cloud environments, supporting bare metal servers, VMs and

Containers monitoring.

The major distinctions between the two tools can be found in the following table:

PowerAPI Scaphandre

Data storage needs to be managed by the
user since the tool only generates the
metrics.

Database to store metrics is included and
managed by the tool to store metrics over
time.

More focused on general energy
consumption metrics.

More focused on cloud environments
metrics (VMs, Containers, Pods, bare-metal
servers).

Requires more configuration to obtain
data from virtualized processes.

Out of the box solution for Pods and
Containers monitoring.

Table 1.2. Comparison of PowerAPI and Scaphandre

3 docs.opennebula.io/6.6/installation_and_configuration/opennebula_services/monitoring.html
4 docs.opennebula.io/6.6/management_and_operations/monitor_alert/overview.html

® github.com/powerapi-ng/powerapi
¢ github.com/hubblo-org/scaphandre
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The advantages that Scaphandre offers are clearly evident. From the solutions already
incorporated for monitoring processes in the cloud, the different metrics output options
(stdout, json, prometheus exporters, etc.), as well as its clear focus on cloud and virtualized
environments. This is why Scaphandre was selected as the tool to be used for the
extraction of energy consumption metrics in COGNIT.

Architecture & Components

The energy consumption monitor system is composed of three main components, depicted
in the High Level Architecture contained in the following Figure:

S & Scaphandre
| VMs LI_ Conbaiiars L Energy Consumption Agent |
| Metrics Exporter | —— ) prometheus
. # 0OpenNebula Host \ ) |

Figure 1.1. Scaphandre integration with OpenNebula’s monitorisation workflow

This architecture is replicable in each OpenNebula Host and it is composed by the
following modules:

e OpenNebula Host: includes all the technology needed in order to virtualize and
orchestrate the cloud resources along all the monitorization probes and metrics for
Host monitorization, including CPU and memory usage, network traffic, etc.

e Scaphandre: expands the OpenNebula native monitorization capabilities by also
gathering energy consumption metrics from VMs, Containers, and Pods.
Scaphandre uses their own agent to collect the energy metrics consumption, then
uses a dedicated exporter in order to offer the metrics results to Prometheus.

e Prometheus: pulls the metrics from the Scaphandre exporter, integrating these
metrics with the metrics collected from OpenNebula owns metrics generated by
their exporters. This Prometheus instance is common for all the OpenNebula Host
so only one Prometheus per deployment is needed.

Prometheus implements the HTTP pull model to gather metrics from the Scaphandre
exporter. The endpoint used by Prometheus to gather metrics can be configured in its
YAML File configuration (prometheus.ym(by default).
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Data Model

The most relevant metrics provided by the Scaphandre exporter’ related to energy
consumption are described in the following table:

Metric Description

scaph_host_power_microwatts Aggregation of several measurements to give a try on
the power usage of the whole host, in microwatts.

scaph_process_power_consumption | Power consumption due to the process, measured at
_microwatts the topology level, in microwatts. PROCESS_EXE being
the name of the executable and PROCESS_PID being
the pid of the process.

Table 1.3. Scaphandre energy consumption metrics

Scaphandre adds labels to these metrics to filter them by process, pods, VMs or
containers. The available labels to filter by these objects are listed in the following table:

Metric Description

vmname Name of the VM in libvirt. Following the OpenNebula name rules,
the VMs name will Follow the form one-<id>.

container_scheduler | Identifies the container scheduler of the container. Possible values
are docker or kubernetes.

contatiner_id The ID of the container got from /proc/PID/cgroup.

Table 1.4. Scaphandre labels

Additionally, the host_id label needs to be added in the Prometheus configuration file in
order to filter by OpenNebula Host ID as shown below:

- job_name: 'scaphandre-onehost-X'
static_configs:
- targets: ['onehost-X:8080']
labels:
host_id: X

OpenNebula Host ID label in Prometheus configuration file

" hubblo-org.github.io/scaphandre-documentation/references/metrics.html
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API & Interfaces

Metrics from the Scaphandre exporter may only be pulled from the OpenNebula Host
when Prometheus scrapes them, the exporter should not perform scrapes based on their
own timers, meaning all scrapes should be synchronous. The table below shows the
endpoint exposed by the Scaphandre exporter:

Action Verb Endpoint Request Body Response
Status code 200 (OK) with
Gather metrics  GET /metrics - all the metrics collected by

the exporter

Table 1.5. Scaphandre exporter endpoints

An example of the metrics returned by the exporter is shown below:

scaph_process_power_consumption_microwatts{vmname="one-3",host_1d="0"} 22807
scaph_process_power_consumption_microwatts{vmname="one-4",host_1d="0"} 38051
scaph_process_power_consumption_microwatts{vmname="one-2",host_id="1"} 15910

Scaphandre exporter metrics output
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[SR4.5] Authentication & Authorization

Description

Currently, authentication across the whole COGNIT Framework is delegated through the
Cloud-Edge Manager. OpenNebula implements a native auth mechanism which can be
based on different authentication backends®. The current implementation of the Device
Client and the Provisioning Engine only supports basic HTTP authorization, so only the
native OpenNebula mechanism based on username and password is used.

Upon receiving a request to create a Service Runtime from a Device Client, the
Provisioning Engine delegates the credentials provided by the Device Client to the
Cloud-Edge Manager. It then requests the creation or retrieval of a Serverless Runtime, to
then request the execution of a FaaS function. In this first development cycle, this request
to the Serverless Runtime is not authenticated. This flow is described in the figure below.

Authentication

Provisioning Cloud/Edge Serverless

Device Client Engine Manager Runtirme

Basic HTTP Authentication

-

authorise user

user authorised

A

GET /serveress-runtime

-

retrieve SH details

.l

3R details

Y

SR details

L)

~— Extract SR endopint

Request FaaS Execution

¥

Figure 1.2. Authentication flow in the current COGNIT Framework

8 https://docs.opennebula.io/6.6/installation_and_configuration/authentication/index.html
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Analysis

In this First cycle we have undertaken a comprehensive analysis to implement a
fine-grained Identity and Access Management (IAM) mechanism, which will play a pivotal
role in the authorization of requests across the entire COGNIT stack. In this First
development cycle, the project has recognized the need for a robust access control
mechanism capable of ensuring secure and encrypted authentication and authorization.
The ultimate goal is to establish a comprehensive IAM system that can cater to the diverse
needs of the COGNIT project. As such, the project aims to achieve a higher level of security
and control by implementing this fine-grained IAM mechanism. This is aligned and
complemented by SR6.1 Advanced Access Control, where a policy based access control
(PBAC) will be implemented.

To illustrate its implementation, we have identified three critical communication points
within the COGNIT stack, each of which will employ a combination of techniques and
technologies, such as JWT (JSON Web Token), SSL (Secure Sockets Layer), and
OpenNebula's authentication capabilities. These communication points and their
corresponding mechanisms are detailed below:

Device Client to Provisioning Engine

Communication will be secured using both JWT and SSL.
JWT (JSON Web Tokens) will be employed to ensure secure identity
verification and authorization of the Device Client.

e SSL (Secure Sockets Layer) encryption will be utilized to protect the
integrity and confidentiality of the data transferred between the Device
Client and the Provisioning Engine.

Provisioning Engine to Cloud-Edge Manager

e Communication between the Provisioning Engine and the Cloud-Edge
Manager will be secured through SSL encryption.

e Cloud Servers OpenNebula Authentication® will be utilised for this
connection, using the oneadmin account, which serves as the root account
in an OpenNebula cloud.

e However, a mechanism similar to the OpenNebula serveradmin account will
be used, a special authentication mechanism that enables servers to
execute operations on behalf of another user, thereby ensuring a correct
level of security and isolation that are key requirements of a multi-tenancy
environment.

Device Client to Serverless Runtime

e For communication between the Device Client and the Serverless Runtime,
a combination of JWT and SSL will be used.

e JWT can be employed to encapsulate other needed auth mechanisms, like
Keycloak tokens, enhancing the security and management of identity and
access for the Device Client.

° https://docs.opennebula.io/6.6/integration_and_development/references/cloud_auth.html#cloud-servers-authentication
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e The use of this encapsulation also enables the possibility of the Serverless
Runtime reaching out to external services on behalf of the Device Client.

e SSL encryption will guarantee the confidentiality and integrity of data
transferred during this interaction.

The fine-grained IAM mechanism within the COGNIT Framework is a critical component
that will enhance the security, authentication, and authorization of requests across the
project. It offers a comprehensive approach to ensure that every communication point is
both secure and efficient. By implementing these technologies and mechanisms, the

COGNIT Project is taking a significant step towards achieving its overarching goal of robust
Identity and Access Management.
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2. Al-Enabled Orchestrator

The Al-Enabled Orchestrator offers recommendations to enable optimal placement of
Serverless Runtimes that aligns with application requirements while also promoting
efficient resource utilisation. It is designed to be able to eventually adapt dynamically to
shifting application requirements and resource availability in the cloud-edge continuum.
To achieve this, the Al-Enabled Orchestrator will use multi-objective optimization to
concurrently evaluate several objectives simultaneously. This will ensure that trade-offs
between conflicting goals, such as maximising performance while minimising cost, are
well-balanced. The main focus of this initial version of the implementation has been on
preliminary research and on the integration of its different subcomponents.

[SR5.1] Building Learning Models

Description

Algorithms must be developed and refined to provide the capability for automated
placement of serverless runtimes based on application and resource requirements and
state. These placement decisions are not static; they must be actively monitored and
dynamically optimised based on changing demand and environmental state. However,
existing service providers are still unclear on how to automate the orchestration process
for complex heterogeneous workloads across the cloud-edge continuum. Machine learning
(ML) has been applied in workload orchestration for different downstream tasks, including
characterising workloads, optimal placement, load balancing, scaling, scheduling, and
resource allocation. However, there is no single solution that provides a complete picture
of any task.

Analysis

Smart deployment of serverless runtimes in a Continuum system is a complex and
challenging task; in the context of the COGNIT project as well as in general across
cloud-edge continuum. Machine learning plays a key role to induce intelligence across the
downstream tasks (e.g. dynamic placement, characterise workloads) in the cloud-edge
continuum. Before discussing these tasks, here it includes foundational details of machine
learning algorithms and how they are employed. ML algorithms can be classified as
classical and advanced or deep learning. They are further classified as supervised,
semi-supervised, unsupervised and reinforcement learning, how data are used to train the
models for a particular task. The classical ML algorithms (e.g., K-nearest neighbour,
decision tree, random forest, support vector machine, regression) perform well even if
some cases have a lower amount of data and less in black-box. Advanced ML or deep
learning algorithms (e.g., Long Short Term Memory, Transformer, Autoencoder) are
data-hungry and need a huge amount of resources to train a model, but they perform well
in complex scenarios [16, 17]. The following figure shows a taxonomy of the classical and
advanced ML methods applied for cloud orchestrators:
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Machine Learning
Methods

— Linear Regression

— Polynomial Regression

— Lasso Regression

———  Support Vector Machine

— Gaussian Process

— Boosting Tree

— Nearest neighbor

— Decision Tree

— Random Forest

—— Artificial Neural Network

— K-Means

— Naive Bayes

— Nearest neighbor

— Random Forest

T T

Classification Decision Making Metrics-based Analysis

———  Support Vector Machine

———  Hierarchical Clustering

——— Convolutional Neural Network

—— Atrtificial Neural Network

—— Reinforcement Learning

—— Markov Decision Process

— Decision Tree

——  Deep Q-Network

1

Autoregressive
—— Integrated Moving
Average

Recurrent Neural
Network

Convolutional Neural
Network

——Artificial Neural Network

—— Variational Autoencoder

Figure 2.1. Taxonomy of ML methods applied in cloud orchestrators

Based on the tasks, ML models are classified as regression, classification, decision-making,

and metric-based analysis. Below are some examples of ML methods.

Random Forest

Random Forest is a supervised learning algorithm, which is developed based on the
decision tree and ensemble learning. One of the recent for workload prediction in
serverless framework [18] employed this algorithm because it is computationally less
intensive and needs a low amount of data for training. An example structure for the
Random Forest algorithm is given in the following figure:

X dataset

N, features N, features N, features N, features
TREE #1 TREE #2 TREE #3 TREE #4
CLASS A CLASS B CLASS C CLASS A
MAJORITY VOTING |
FINAL CLASS |
Figure 2.2. Random Forest
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Attention-based RNN

Building a model for multiple time steps prediction has often been a challenging task for
diverse applications, including FaaS workloads in serverless. One of the recent models
developed based on Recurrent Neural Networks (RNN). The input sequence encodes into
new representation with encoder and decodes the representation into an target
sequence.

An attention layer is integrated to the encoder-decoder RNN model that allows the
network to Focus on parts of the input sequence that are relevant to predicting target
sequence. The attention model is jointly trained with other components of the model that
are able to predict multiple time steps. An attention-based RNN architecture is given in the
following figure:

Decoder

Yre1 Vi Y

1

Sp i S1 Si1 i

=) LSTM m) ... LSTM =) ... m) LSTM
L) L) L)

[ey, 9o [c, Yriid ler,raad
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1

Encoder

h, h; h

LSTM B ... m) LSTM m) ... =) LSTM =)
L) Ll LI

X; X; Xr

Figure 2.3. Attention-based RNN
ML-based orchestrators are classified based on the application architecture, optimization

objectives, infrastructures, behaviour modelling and prediction, and resource provisioning.
The following figure illustrates the taxonomy of ML-based orchestrators.
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Figure 2.4. Taxonomy of ML-based orchestrators

One of the recent works shows data-centric function orchestration in serverless, where
the platform provides a data-bucket abstraction to hold the intermediate data generated
by function orchestration [15]. Another work [14] is fFocused on a multi-objective
scheduling policy for a serverless-based cloud-edge continuum. However, there are several
opportunities to induce Al for orchestration that enable it to place serverless runtimes
optimally across the cloud-edge continuum.

Optimization objectives

Given the variety of applications and cloud infrastructures, optimising serverless runtimes
depends on the metrics collected from applications and resources. Orchestration solutions
are often designed to satisfy multiple objectives that either satisfy resource requirements
or satisfy the Quality of Service (QoS). Achieving a balance between the multiple
optimization objectives remains a central challenge in ML-based serverless runtime
placement and resource management. A few important and relevant optimization
objectives are listed below.

e Define and processing of data: Defining where data is being processed according to
Serverless Runtime deployment attributes for performance, cost, security, and
energy requirements. While resources must be close to the final use for
latency-sensitive applications, the resources must be close to the data sources for
data-intensive applications. If edge resources are limited or insufficient, functions
can be executed on the cloud for compute-intensive applications.

e Energy Efficiency. The continuous growth of cloud data centres consumes
tremendous power. One of the key objectives for geo-distributed placement of
serverless runtimes is to prioritise green energy hosts. Optimising energy
efficiency and reducing power grid congestion, through optimized geographic
distribution of workloads in distributed cloud-edge infrastructures that adapt in
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real-time, to available energy and reduce environmental impact - exploiting the
opportunities offered by the edge-cloud continuum while incentivizing the local
generation and use of green energy.

e Resource Efficiency: The key challenge here is to utilise the resource metrics and
system states to optimise resource utilisation using ML-based methods. Dynamic
application task placement and orchestration fFor cost-efficient, secure and optimal
performance in the continuum layers through advanced deep learning methods is
another key challenge.

e SLA Assurance: To fill the dynamic requirements of applications, diverse service
level agreements (SLAs) are often identified, including response time, throughput,
initialization time, etc. These SLAs become prime optimization criteria to meet the
requirements of dynamic workloads for serverless runtimes. Improving the
reliability of the infrastructure by anticipating failures and local power grid
congestion.

e Cost Efficiency: Market-based cloud solutions prioritise cost efficiency, as they
follow the pay-as-you-go model. The goal is to minimise overall financial costs while
meeting user-defined QoS requirements.

e Load Balancing: Distribute loads across the networks among runtimes evenly based
on a specific policy like RoundRobin. Its results will improve system scalability,
availability, and network performance. Implementing dynamic load balancing to
respond to changing requirements from the application execution flow or to
changes in capacity demanded by the Serverless Runtime due to data size or
processing needs variability.

Before we can design, implement, and validate effective algorithms to perform all of these
functions, it is First necessary to adequately develop formal models that accurately
identifies the many components of a continuum system (applications, compute resources,
storage, energy providers, business process, etc.), together with their interactions. This is
particularly relevant when considering the energy efficiency of such a system - an area
currently under-developed in the existing literature.

We have explored recent modelling literature and have categorised it into seven brackets:
research focus, Continuum coverage, formal model, energy model, optimization
objectives, type of applied technique, the evaluation method, and prospective application
areas. This is illustrated in Tables 2.1 and 2.2 below.

After careful investigation of the current research on Continuum modelling, we observe
that in the literature several formal models for traditional cloud systems have been
proposed {Benzadri2013, Khosravi2017} but these do not capture the dynamic nature of
cloud-edge systems or integrate stochastic properties, energy providers, pricing, and
renewable energy sources.

Most work assumes a single datacenter, precluding intrinsic challenges faced with the
management of federated systems, such as how to monitor and schedule multiple
complex resources across multiple networks in a scalable and decentralised manner with
SLO awareness {Nastic2021}, and how to balance accuracy with decision making latency
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(many recent approaches, such as {Gao2020, Zhang2019}, use machine-learning methods
that are too slow to provide the ultra-low latency scheduling required by edge
applications).

A basic model that integrates nodes with energy providers is presented in {Xu2021} but
does not consider federated edge systems or cross-site monitoring issues, while {Li2018}
only considers micro-grid integration with edge nodes, with no centralised cloud
integration. Of work that does consider energy-aware federated systems, little has been
achieved; {Minh2022} propose an integration between smart grids and cloud-edge systems
but the proposed architectural model is extremely high-level and does not consider
monitoring overhead, task properties, or decentralised control.

Modelling and Prediction

Modelling behaviour of application workloads in serverless is the study of complex system
behaviour and patterns by analysing application-level metrics. It helps in near-accurate
prediction for ML techniques, it further benefits orchestration's optimization objectives
and resource provisioning decisions.

Workload characterization is key for assessing dynamic applications and understanding
workload behaviours, which is essential for optimal serverless runtime placement. The
following table compares ML-based workload characterization methods:

Method Infrastructure | Application Model | Objective | Advantages Limitations
Architecture
ANN, 2023 Single cloud Monolithic CNN Classify Performance | Scalability
[13] with data improvement
RelLu points into

relevant

workload

classes
Metrics-based | Hybrid cloud Microservice | Bi-LSTM | Task Performance | Inaccuracyin
Analysis, 2021 arrival rate | improvement | long-term
[1] prediction forecasts
Metrics-based | Single cloud Serverless LSTM Request High Simplicity of
analysis, 2020 arrival rate | prediction application
[2] prediction | accuracy models
Classification, | Single cloud Monolithic K-means | Resource High Limited
2020 [3] ++ demand scalability accuracy under

prediction high load

variance
Metrics-based | Single cloud Monolithic ARIMA Request Capability of | Inaccuracy
analysis, 2020 arrival rate | large data under trend
[4] prediction | scales turning
Metrics-based | Hybrid Cloud Microservice | IGRU-SD | Resource Low error Unclear
analysis, 2020 demand rates demonstration
[5] prediction of the
relationship
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between
resource
allocation and
energy
efficiency

Table 2.1. Summary of workload characterization methods

Resource Provisioning
Resource provisioning for applications is challenging due to the diversity of cloud
workloads, resource heterogeneity and complex applications. To address this complexity,
modern resource provisioning strategies focus on ML-based approaches to optimise
resource allocation accurately and efficiently.

Scheduling determines the initial placement of serverless runtimes, considering various
application and task structures. It significantly impacts application performance and
resource efficiency. One recent work provided on greedy scheduling policies for
serverless framework [14]. The following table summarises the existing scheduling

methods:
Application Task
Method | Infrastructure | and Arch. Structure Objective Advantages Limitations
Greedy, Cloud-edge Serverless Multiple Cost and Multi-objective | Highly
2023 [14] | continuum latency task placement | dependent
Heuristic, | Hybrid cloud Serverless Single Cost and Multi-objective | Limited
2021 [6] latency task accuracy
minimization | placement under
high load
variance
Heuristic, | Hybrid cloud Serverless Graph-based | Cost SLA- assurance | Simplicity of
2020 [7] minimization application
workloads
Heuristic, | Single cloud Serverless Multiple Resource Reduction of Poor
2020 [3] independent | utilisation cold start and efficiency for
improvement | response tasks
and latency with long
energy lifetimes
saving

Table 2.2. Summary of scheduling methods

Even though there are solutions for orchestration of workloads, there are several open
challenges for cloud-edge continuum workload orchestration based on the dynamic
changes of serverless runtimes. However, these workloads can be optimised with
multi-objective optimization for placement of runtimes. The following table lists some
challenges and potential solutions:
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Challenge in workload orchestration | Potential Al-based solutions

How to characterise workloads by LSTM, K-means++, Bi-LSTM, ATeen-LSTM, GRU,
modelling and predicting requests Attention-based RNN

behaviour and resource usage
patterns?

How to analyse inter-dependency Random Forest, BO, GP, CNN, and LSTM
between applications and classify
them?

How to analyse dependency of tasks in | SVM, Graph neural networks, Probabilistic neural

applications? networks

How to achieve energy efficient MDP, Q-learning,
resource scheduling for serverless

runtimes?

How to balance the trade-offs Actor-critic, ANN, and RF

between different metrics during
workload orchestration?

How to alleviate function cold starts in | Q-learning, LSTM, Linear regression
serverless computing?

How to make scaling/migration decisions Model-based RL, MDP
for runtimes?

Table 2.3. Potential Al-enabled orchestration solutions for optimal serverless runtime placements

The overall analysis of the state-of-the-art on Cloud-Edge Continuum highlights the lack of
unified systems, formal models, advanced machine learning models, and methods to
seamlessly integrate various energy factors including temporal pricing, renewable energy
sources, energy provider requirements, resource restrictions, and balance consumption
over large-areas with other non-Cloud consumers.

Research in this field typically results in either reference architectures or simulated system
environments, with computing, networking, and storage resource management serving as
the primary focus. These observations demonstrate the absence of a unified resource
orchestration technique capable of integrating the pricing models, types of workloads,
multi-objective optimization, monitoring, and controlling strategies, QoS and SLO
requirements of end-users, heterogeneous systems and networking technologies, energy
policies, energy providers, energy sources, and administration of compute and network
resources in the energy-aware federated Cloud-Edge Continuum.

There is, therefore, a clear need to bridge this gap and exploit the modelling of cloud-edge
continuum key components, their relevant stochastic properties and interactions, and their
integration with key energy factors as well as advanced machine learning models to induce
intelligence for across downstream tasks.
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[SR5.2] Smart Deployment of Serverless Runtimes

Architecture & Components

The architecture for Al-Enabled Orchestrator is straightforward with primary focus on
integration in this cycle of implementation. The Cloud-Edge Manager sends a request to
the Al-Enabled Orchestrator, which contains a list of potential hosts For placement in turn,
the Al-Enabled Orchestrator interacts with the Cloud-Edge Manager to gather additional
details about the shortlisted hosts, such as their present workload, CPU, and remaining
memory. The figure below shows the high-level architecture of the Al-Enabled
Orchestrator:

o T,
" Cloud-Edge - Al-Enabled\
Manager Orchestrator
T
Scheduler | | REST API
N /

Figure 2.5. High-level architecture of the Al-Enabled Orchestrator

The Al-Enabled Orchestrator is implemented in Python and deployed as a microservice
either as a standalone Docker container. In the first version of the Al-Enabled Orchestrator,
an improved FFD (First-Fit Decreasing) algorithm (see below) has been implemented and
deployed to prioritise placement recommendation of VMs with associated hosts. There are
several Al algorithms under implementation based on the downstream tasks (e.g.
workload characterization and prediction, dynamic and optimal placement). These
algorithms will be provided as plug-ins, allowing the Al-Enabled Orchestrator to efficiently
adapt to a wide variety of scenarios and requirements.

Algorithm #1: FFD placement
Input: VM configuration and available hosts
Output: Assignment results

Sort vms by decreased order of Cpu
Assignment_results = []
for vm in vms:
get available hosts resources

for host in renewable hosts:

if vm[“CPU’] < host[‘CPU’] and vm[‘Memory’] < host[ ‘Memory’]:
result = [vm, host]
if vm unassigned:
for host in unrenewable_hosts:
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If vm[‘CPU’] < host[‘CPU’] and vm[‘Memory’] <
host[ “Memory’]:
result = [vm, host]
if vm unassigned:
Result = [vm, none]
Assignment_results.append(result)
return Assignment_results

Initial implementation of a First-Fit Decreasing (FFD) algorithm

Data Model

Information about the Data Model is reported in presented the next section SR5.3

API & Interfaces

Communication between the Cloud-Edge Manager and the Al-Enabled Orchestrator is
done using a HTTP protocol. The placement request is directed to the Al-Enabled
Orchestrator, which runs a HTTP server implemented using FastAPI. The request carries
JSON data, as illustrated below. The Al-Enabled Orchestrator needs to rank all hosts
specified in the HOST_IDS array, taking into account both the system state and the
provided capacity requirements.

Action Verb Endpoint Request Body Response

Status code 200 (Success)
if the execution was
successful. A JSON with
information about the
placement is returned.
400 (Bad request) if there
is any error.

JSON representation
of the VMs associated
with pending
Serverless Runtime
services and the list of
available HOSTSs.

Request a placement
plan for PENDING POST /
Serverless Runtimes

Table 2.4. API that defines the endpoint of the Al-Enabled Orchestrator
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[SR5.3] Scheduling Mechanisms

Description

The default OpenNebula scheduler implements a matchmaking algorithm that assigns
Virtual Machines in pending state to suitable hypervisor hosts, or nodes for short. This
algorithm is implemented in two different phases. The first phase involves filtering the
available nodes to remove those that are not suitable for a particular VM (this can happen
for multiple reasons, for instance not enough capacity in terms of CPU and/or memory). In
the second stage of the algorithm, these shortlisted nodes are ordered by priority, and the
one with higher priority is chosen to deploy the VM on it.

The scheduler has been extended so the second phase (prioritization) can be delegated to
an external scheduler that can then implement additional algorithms tailored to your
specific use case or business logic. Communication is established through a
straightforward REST API, which will be encrypted in subsequent development cycles.

Architecture & Components

In the context of the High-Level Architecture of the Cloud-Edge Manager’s Scheduler
extension, Figure 2.6 below provides a visual representation of the system's structure. You
can refer to this figure to gain a deeper understanding of how the components interact
and the overall layout of the COGNIT Architecture.

When the Cloud-Edge Manager receives a request from the Provisioning Engine to create a
new Serverless Runtime, it initiates an internal process to add a new entry in the Virtual
Machine Pool. This entry corresponds to a Virtual Machine in a 'Pending’ state.

The matchmaking Scheduler, a core component, plays a pivotal role in the system's
operation. It runs once in every scheduling cycle, typically set to a 30-second interval but
configurable. During its execution, it gathers comprehensive information about all
available hosts and Virtual Machines in the 'Pending’ state.

Following this data retrieval phase, the matchmaking Scheduler engages in the Filtering
process, as elaborated upon in earlier sections. Instead of proceeding directly to the
prioritisation phase, a critical step involves the scheduler making a synchronous call to the
Al-Enabled Orchestrator REST API. This call is made through a POST request, as
documented in the Data Model section. The information concerning hosts and Virtual
Machines is transmitted during this request.

It is important to note that this API call operates with a timeout mechanism in place. If the
Al-Enabled Orchestrator does not respond in a timely fashion, the matchmaking Scheduler
assumes the responsibility of making the scheduling decision. This ensures that the system
maintains a degree of resilience and timely operation even in the face of potential delays.

Moreover, it's worth mentioning that the information passed to the Al-Enabled
Orchestrator may not be exhaustive for making all the scheduling decisions. In such cases,
the XMLRPC API of the Cloud-Edge Manager can be leveraged to request additional
information about specific hosts or Virtual Machines. Furthermore, the system can tap into
Prometheus integration with the Cloud-Edge Manager's monitoring system. This
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integration enables the querying of valuable insights, such as energy consumption, to
enrich the decision-making process. This multifaceted approach ensures that the
scheduling system is well-informed and adaptable, making it capable of handling diverse
scenarios effectively.

\ 4 N @ AtEnabled

Provisioning Cloud-Edge Manager Orchestrator
Engine - - ! ’
Serverless
4 Runtime
request Scheduler . I HAEPS |T
VM placemant
POST raquest

N J < 4

Figure 2.6. High level architecture of the Cloud-Edge Manager’s Scheduler extension

Data Model

This section delves into the underlying structure of JSON documents exchanged between
components in the Cloud Manager scheduler extension. These JSON documents are
central to the effective communication and coordination of resources within the system.
The following table provides comprehensive insight into the attributes and their meanings
within these documents, elucidating how information is formatted and transmitted.

Fields Type

CAPACITY An array indicating the VM's capacity requirements

CAPACITY/CPU Requested relative CPU shares (e.g. 0.5)

CAPACITY/MEMORY | Memory in kilobytes

CAPACITY/DISK Additional disk space in the system datastore (in megabytes)
HOST_IDS A list of IDs for hosts meeting the VM requirements

ID VM’'s ID

STATE Current state in string form

ATTRIBUTES Custom attributes as specified in scheduler configuration in

EXTERNAL_VM_ATTR.

Table 2.5. Attributes between OpenNebula and Al-Enabled Scheduler communication
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The following examples describe a JSON schema of the data sent to the Al-Enabled
Orchestrator APl and the expected return, respectively:

"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"yMS": {
"type": "array",
"{tems": {
"type": "object",
"properties": {
"VM_ATTRIBUTES": {
"type": "object",
"properties": {
"GNAME": { "type": "string" },
"UNAME": { "type": "string" }
s
"required": ["GNAME", "UNAME"]
s
"CAPACITY": {
"type": "object",
"properties": {
"CPU": { "type": "number" },
"DISK_SIZE": { "type": "number" },
"MEMORY": { "type": "number" }
s
"required": ["CPU", "DISK_SIZE", "MEMORY"]
s
"HOST_IDS": {
"type": "array",
"{tems": { "type": "integer" }
s
"ID": { "type": "integer" },
"STATE": { "type": "string" }
s
"required": ["VM_ATTRIBUTES", "CAPACITY", "HOST_IDS", "ID", "STATE"]

}
1},
"required": ["VMS"]

JSON Schema for Scheduler to Al-Enabled Orchestrator communication
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"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"wMS": {
"type": "array",
"{tems": {
"type": "object",
"properties": {
"ID": { "type": "integer" },
"HOST_ID": { "type": "integer" }
s
"required": ["ID", "HOST_ID"]

}
s
"required": ["VMS"]
}

JSON Schema for Al-Enabled Orchestrator to Scheduler communication

To illustrate this point, let's consider another example (below) where the following JSON
document serves as a prime representation. Within this JSON structure, a request for
provisioning three Virtual Machines (VMs) is articulated, along with their specified
matching hosts:

{
"VMS": [
{

"VM_ATTRIBUTES": {
"GNAME": "oneadmin",
"UNAME": "oneadmin"

s

"CAPACITY": {

"CPU": 1.5,
"DISK_SIZE": 1024,
"MEMORY": 131072

s

"HOST_IDS": [

3,
4,
5
15
"ID": 32,
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"STATE": "PENDING"
s
{

"VM_ATTRIBUTES": {
"GNAME": "users",
"UNAME": "userA"

s

"CAPACITY": {
"CPU": 1.5,
"DISK_SIZE": 1024,
"MEMORY": 131072

3,

"HOST _IDS": [

3,
4,
5

15

"ID": 33,

"STATE": "PENDING"

s
{

"VM_ATTRIBUTES": {
"GNAME": "users",
"UNAME": "userA"

s

"CAPACITY": {
"CPU": 1.5,
"DISK_SIZE": 1024,
"MEMORY": 131072

3,

"HOST _IDS": [

3,
4,
5

15

"ID": 34,

"STATE": "PENDING"

HTTP Payload example for POST request from Scheduler to Al-Enabled Orchestrator
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The external scheduler should respond with a compliant structure, incorporating the
chosen HOST_ID for each VM. For example, the response to the aforementioned request
might appear as follows:

{
"WMS": [
{
"ID": 32,
"HOST_ID": 3
},
{
"ID": 33,
"HOST_ID": 3
},
{
"ID": 34,
"HOST_ID": 5
}
]
}

HTTP Payload example for POST answer from Al-Enabled Orchestrator to Scheduler

API & Interfaces

The Scheduler employs a straightforward REST API for its operation. When the external
scheduler is configured, the OpenNebula scheduler initiates a POST operation directed to
the specified URL. The sole mode of interaction between the Cloud-Edge Manager’s
Scheduler and the Al-Enabled Orchestrator occurs through this POST request and its
corresponding response, facilitated by HTTP payloads.

To offer a visual understanding of the REST API's structure, the following example
provides a simplified template designed to assist in the creation of the Al-Enabled
Orchestrator API. This template, implemented in Ruby and utilising the Sinatra web
framework, serves as a valuable resource. The central objective of this scheduler is to take
the initial list of hosts for each virtual machine and employ a host allocation randomization
strategy based on the Virtual Machine ID:

{
"WMS": [
{
"ID": 32,
"HOST_ID": 3
1

{
"ID": 33,
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"HOST_ID": 3
s
{
"ID": 34,
"HOST_ID": 5
}
1
}
Ruby Template codifying the Al-Enabled Orchestrator API
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3. Energy Efficiency Optimization in the Multi-Provider
Cloud-Edge Continuum

Preliminary research on energy efficiency optimization

Recent years have seen a rapid expansion of renewable energy supply, both on the
grid-level (regionally) and through (highly distributed) on-site power generation. The local
availability of renewable energy supply varies between different locations and also
throughout the day, depending on many factors including the local energy mix (e.g., hydro,
PV, wind), weather conditions, and the time of day. These fluctuations and unpredictability
of the energy supply pose many challenges to modern energy systems. To further
complicate things, power capacity constraints of the power transmission and distribution
networks are another challenge in many urban areas, which necessitates implementation
of demand response mechanisms (dynamically varying the power demand in response to
power supply and grid capacity).

The geographically distributed nature of the cloud-edge continuum, as well as the
temporal flexibility of some computing tasks, makes it possible to adapt the scheduling
and placement of workloads based on the local availability of renewable energy. Improving
energy efficiency and sustainability are key considerations for the Al-Enabled Orchestrator
in COGNIT when scheduling and determining placement of workloads within the
cloud-edge continuum. In terms of energy efficiency, the aims of COGNIT are twofold:

e Toincrease the amount of renewable energy used—or more precisely, reduce the
amount of non-renewable energy used.

e To reduce the amount of energy used to process the workloads managed by
COGNIT, i.e. manage the infrastructure and scheduling/placement of workloads in
such a way that the energy used is minimised.

To achieve these objectives, the Al-Enabled Orchestrator will take into account:

e The availability of renewable energy, and more specifically the carbon intensity of
the energy supply, at different cloud-edge locations.

e Energy profiles of different applications and energy efficiency of different hosts, to
improve the pairing between Serverless Runtimes and hosts.
Migration overhead when deciding whether or not to migrate a Serverless Runtime.
Power grid congestion and available power capacity.

The Al-Enabled Orchestrator will have access to up-to-date day-ahead forecasts of
renewable energy supply at the different locations/edge clusters, as well as detailed
monitoring data of the energy use of the Hosts and Serverless Runtimes.

The COGNIT Project will address a number of challenges that arise when considering the
highly distributed multi-provider context of the cloud-edge continuum:

e Creating forecasts of available “renewable compute capacity” across the
cloud-edge continuum.

e Predicting the energy profiles of different Serverless Runtimes, and the suitability
of running different Serverless Runtimes on different hosts.
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e Use a data-driven Al approach, rather than considering pre-determined and static
energy models, to estimate energy use.

e Introducing energy performance metrics suitable for a highly heterogeneous,
multi-provider cloud-edge context.

e Developing a carbon- and grid-aware Al-Enabled Orchestrator.

The current state of the art and challenges related to these aspects are further explored in
the following subsections.

Metrics and KPIs for measuring energy efficiency and sustainability

Several different metrics have been proposed for quantifying the energy performance of
datacenters, such as [Lykou2018,5hao2022]:

e PUE (Power Utilisation Efficiency), which is the ratio (Total energy used by the
datacenter) / (Total energy used by the IT equipment), and reflects the overhead of
the datacenter facilities (including cooling).

e GEC (Green Energy Coefficient), which is the ratio (Total green energy used by the
datacenter) / (Total energy used by the datacenter).

e CUE (Carbon Usage Effectiveness), which is the ratio (Total GHG emissions) / (Total
energy used by the IT equipment)).

e DCeP (Data Center Energy Productivity), which is the ratio (Useful work produced) /
(Total energy used by the data center).

e CPE (Compute Power Efficiency), which is the ratio (IT Equipment Utilisation * IT
Equipment Power) / (Total facility power).

e ERE (Energy Reuse Effectiveness), which is the ratio [(Total energy used by the
datacenter) - (Reused energy)] / (Total energy used by the IT equipment), and takes
into account energy recirculated into the energy system, e.g., through waste heat
utilisation.

These metrics do not comprehensively evaluate the energy performance of datacenters,
and new metrics are needed [Lykou2018,Shao2022]. They are also not directly comparable
between datacenters, for example if there are large differences in hardware
configurations between them, and they do not take into account energy used by network
infrastructure (which is critical in a highly distributed cloud-edge continuum). It is also very
challenging to attribute/estimate GHG emissions. Moreover, the energy used by IT
equipment does not translate into actual work done, not the least since IT equipment has
significant power draw even in idle state. The metrics DCeP and CPE attempt to bridge this
gap, but it is not straight-forward to define what useful work produced or IT equipment
utilisation actually mean, due to the complexity in understanding and quantifying utility
and behaviour of different applications and workloads.

One attempt to provide a more detailed definition of the term (Useful work produced),
denoted by W, is proposed in [Sego2012], and is essentially a weighted sum of application
tasks fFinished over an assessment period:

Na M}_

W= j§1i§1 Vj . Uj(tij' Ti]') ' Cij'
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wherej = 1,.., N, indexes the applications, N, is the number of applications, and
i=1,.., M], indexes Useful Computational Units (UCU) initiated by application j during the
assessment period, Vj is the (given) relative value of a UCU of application j, Uj is a
prescribed utility function for timely completion of the UCU, and Cij is a binary variable

thatis 1 if the UCU has completed during the assessment window, and 0 otherwise.

These are challenges that need to be addressed when defining and monitoring energy and
sustainability performance metrics in a highly distributed multi-provider context, and will
be key to defining good objective functions to guide efficient placement and scheduling of
Serverless Runtimes.

Renewable and carbon-aware computing

The percentage of renewable energy, or more precisely the overall energy mix and carbon
intensity of the power supply, varies over time and across locations. The precise energy
mix depends on many factors, such as the weather, time of day, season, and end-user
behaviours. Additionally, some cloud-edge locations may have on-site generation and
energy storage. Using day-ahead forecasts of the energy supply mix, it is possible to
proactively adapt the amount of computing resources to be made available at the
different cloud-edge locations.

To effectively adapt the compute resources, it is necessary to forecast both 1) renewable
availability and carbon intensity of the local energy mix at each location, considering both
the grid and any available on-site supply, and 2) the compute demand, both system-wide
and the demand at each location or cluster of locations (since some workloads may be
constrained to certain locations). This idea is explored in a study by Google, which
combines day-ahead forecasts of renewable energy supply with day-ahead forecasts of
compute demand to generate carbon-aware Virtual Capacity Curves, to adapt the compute
capacity throughout the day at different datacenter locations to increase the utilisation of
renewable energy [Rad2023]. They consider the temporal flexibility of some of the loads
to shape the load curves to fit the availability of renewable energy.

Reinforcement learning, with states given by current availability of CPU, memory, and I/O,
current weather, and current electricity price, has been investigated for improving the
utilisation of renewable energy when scheduling big data workloads [Xu2020].

Energy use and energy efficiency

Predicting the resource utilisation of an application over time, and estimating how much
energy it will use, is a highly complex task. Furthermore, different applications have
different utilisation patterns, i.e., in terms of network communication, I/O, memory access,
CPU load, etc., that need to be taken into account when they share resources on a single
server. This is further complicated by the non-linear relationship between utilisation rate
(e.g., CPU load) and the performance (e.g. operations performed), which further depends
on the specific hardware platform and configuration. This non-linear relationship is
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illustrated, for example, in the results from the SPECpower Benchmark published by the
Standard Performance Evaluation Corporation.™

This idea of reducing energy use by scheduling VMs with anti-correlated CPU utilisation
patterns on the same machine is explored in [Shaw2019].

While it is not straight-forward to define what is meant by application performance, and to
model the specific relationship between it and power or energy use, it is possible to
formulate a few guiding principles:

e From an energy efficiency perspective, it is not necessarily optimal to maximise
CPU/resource utilisation of active hosts.

e Idle/unused hosts use significant energy, but shutting down/starting new hosts
takes time.

e The dynamic resource utilisation patterns of different workloads may interfere
with one another, but proper prediction of such patterns and scheduling of
Serverless Runtimes can reduce such interference and improve performance.

e Different hardware platforms and configurations provide different energy
performance to different workloads.

Grid-aware computing, and the role of datacenters for grid stability

While datacenters are one of the fastest growing loads on the power grid, they also offer
unique opportunities to help maintain grid balance and enable the integration of more
renewables in the energy system, for example by engaging in frequency regulation
markets through dynamic demand response—such grid services can be monetized and
provide further sources of income [Paananen2021]. In terms of demand side flexibility,
even without considering the temporal aspects of scheduling loads, there is significant
economic potential in just migrating loads between datacenter locations to participate in
different energy markets [Fridgen2017]. For example, the problem of curtailment, i.e.,
when the supply of renewable energy exceeds the demand, can be potentially mitigated
by migrating workloads between different locations [Zheng2020].

The relevant markets and regulations for smart grids are still not fully developed, but it is
important to investigate the role of the cloud-edge continuum in such future scenarios. In
particular, as datacenters move closer to densely populated and urban areas, they will
need to engage with local energy communities and schedule their loads accordingly, in
accordance with local smart grid mechanisms and regulations. For example, the Universal
Smart Energy Framework'" (USEF) provides a basis for engaging high power intensity
consumers, such as datacenters, to participate in local energy markets and provide various
grid services to enhance grid stability.

The current energy aggregator services have been developed and deployed in different
national and international demand response pilot projects to evaluate the potential of
both behind-the-metre and front-of-the-metre network optimizations. However, such
applications have not been fully explored in datacenters, and further investigations are

0 https://www.spec.org/power_ssj2008/results/power_ssj2008.html.
" USEF Energy - Universal Smart Energy Framework
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needed to understand which grid services are more financially viable for datacenter
operators.

Conclusions and future work

In conclusion, to reduce the energy use of, and the amount of non-renewable energy used
by, the cloud-edge continuum, it is important to predict compute demand and how it can
be scheduled over time and across locations, and proactively adapt the compute capacity
accordingly. Measures need to be implemented to:

e Identify the most energy efficient of the participating edge clusters (possibly
depending on the specific application/workload).

e Use forecasts of local availability (and carbon intensity) of renewable energy (both
from the grid and on-site), to produce forecasts of available compute capacity
running on renewable energy, across locations. Both grid and on-site energy supply
and energy storage solutions need to be considered and optimised.

e Forecast the compute demands and dependencies of applications, across time and
space.

e Proactively schedule the workloads and infrastructure to pair workloads with the
right hosts, to improve system-level energy performance.

e More research is needed to understand how datacenters can participate in the local
energy markets to reduce grid congestion and improve overall grid resiliency and
reduce system-wide carbon emissions, including monitoring of, and participation in,
smart grid initiatives and standardisation.

In summary, to enable grid-aware computing, and promote datacenters as active
participants in future grid services, a holistic approach is needed to better adapt the
current datacenter energy systems to developing standard energy market frameworks. It
is necessary to investigate which grid services that datacenters should target, and develop
interoperability frameworks for the multi-provider cloud-edge continuum based on local
regulations and energy mix, as well as integrating their current Energy Management
Systems (EMS) with local flexibility market operators and service platforms. Last, but not
least, a sustainability assessment framework and methodology is needed to critically
evaluate the above, given the local dynamics of carbon intensity and energy mix.

The COGNIT Project aims to contribute to all these points in the coming research and
innovation cycles, with a special focus on the challenges associated with energy efficiency
optimization across the cloud-edge continuum.
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Prototype of energy efficiency optimization For cloud-edge orchestration

A first prototype of energy efficiency optimization for cloud-edge orchestration has been
developed during the First Research & Innovation Cycle (M4-M9) in order to explore a
number of integration aspects of the COGNIT Framework.

The main purpose of the demonstrator was not to investigate advanced energy-aware
placement algorithms, but rather to gain sufficient understanding on how to integrate and
interact with the various COGNIT components under development. This understanding is
crucial for building a working COGNIT platform and addressing in future cycles the
development of more sophisticated Al/ML algorithms for workload orchestration.

The figure below illustrates the components of the current prototype:

Cloud-Edge Manager
5. Selected VM

OpenNebula Placement Service  _ .

Sunstone Ul
J 1‘ 2. Place VM request ?e qF::gf M

1.Create VM

v

OpenNebula Scheduler
Al-
‘ T Orchestrator
Monitoring Service
(Prometheus)

Set
Demoaftrator renewable \ T 4.Get host info

System State Service N

A J

+

Figure 3.1. Overview of system components in the demonstrator.

The Cloud-Edge Manager serves multiple roles, including interacting with the OpenNebula
Scheduler, monitoring and keeping track of the current system state. It is also responsible
for interacting with the Al-Enabled Orchestrator.

The Al-Enabled Orchestrator's primary role in this first demonstrator is only to rank and
suggest a suitable host for VM placement. When a VM is initiated through the OpenNebula
Sunstone GUI service or by an HTTP request (Step 1), the Cloud-Edge Manager sends a
request to the Al-Enabled Orchestrator, which contains a list of potential hosts for
placement (Steps 2 & 3). In turn, the Al-Enabled Orchestrator interacts (Step 4) with the
Cloud-Edge Manager to gather additional details about the shortlisted hosts, such as their
present workload and remaining memory. After that, the Al-Enabled Orchestrator selects
a host and communicates the recommendation back to the Cloud-Edge Manager,
specifying the most optimal host for the new VM.

The selection algorithm is implemented by dividing the shortlisted hosts list into two
groups: (1) those operating on renewable energy and (2) those not powered by renewable
energy. Subsequently, hosts within these two lists are sorted based on the availability of
memory and CPU cores. The final ranking is achieved by merging the two sorted lists,
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placing the renewable host list before the non-renewable host list. The top selection is
then simply made by selecting the first element in the combined list.

System State Service

A Prometheus database is used to routinely scrape host, VM, and system information from
the OpenNebula instance. Running in a separate Docker container, the System State
Service'? extracts data from the Prometheus database every second, creating an
in-memory database that mirrors the current system state, such as available memory and
CPU on the hosts. Additionally, the System State Service provides an extra renewable state
that indicates whether a host is powered by renewable energy.

The System State Service also provides a REST API. This APl is used by the Al-Enabled
Orchestrator to access host information and is used by the Demonstrator GUI' to visualise
the current system state.

Selected VM

Placement Service
Create hosts _

Create VMs Place VM
Delete VMs requests

Get host info
System State Service

Figure 3.2. Overview of system components in the demonstrator when using a simulator.

Simulation

The Placement Service part of Cloud-Edge Manager introduces an abstraction layer,
allowing for integration with schedulers other than OpenNebula’s one. Specifically, this
design makes it possible to substitute the entire OpenNebula system with a simulator, as
shown in Figure 3.2. Using the simulator, a comprehensive testing of the Al-Enabled
Orchestrator can be carried out. This enables examinations of various emulated scenarios
and evaluation of system performance under diverse workloads. In the next iteration, we
aim to use the developed simulator to investigate scalability aspects and observe the
behaviour of the Al-Enabled Orchestrator under various workloads and energy availability
conditions.

2 https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator/tree/main/src/system-state-recorder
'3 https://github.com/SovereignEdgeEU-COGNIT/ai-orchestrator/tree/main/src/system-state-recorder-ui
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Watch a video showing the behaviour of this initial prototype of energy efficiency
optimization for cloud-edge orchestration: https://vimeo.com/879130827
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