
 A Cognitive Serverless Framework for the Cloud-Edge Continuum

 D3.2 COGNIT FaaS Model -
 Scientific Report - b

 Version 1.0

 30 April 2024

 Abstract

 COGNIT is an AI-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
 Continuum that enables the seamless, transparent, and trustworthy integration of data
 processing resources from public providers and on-premises data centers in the
 cloud-edge continuum. The main goal of this project is the automatic and intelligent
 adaptation of those resources to optimise where and how data is processed according to
 application requirements, changes in application demands and behaviour, and the
 operation of the infrastructure in terms of the main environmental sustainability metrics.
 This document describes the research and development carried out in WP3 “Distributed
 FaaS Model for Edge Application Development” during the Second Research & Innovation
 Cycle (M10-M15), providing details on the status of a number of key components of the
 COGNIT Framework (i.e. Device Client, Serverless Runtime, and Provisioning Engine) as
 well as reporting the work related to supporting the Secure and Trusted Execution of
 Computing Environments.

 Copyright © 2023 SovereignEdge.Cognit. All rights reserved.

 This project is funded by the European Union’s Horizon Europe research and innovation
 programme under Grant Agreement 101092711 – SovereignEdge.Cognit

 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
 International License.

https://cognit.sovereignedge.eu/

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Deliverable Metadata

 Project Title: A Cognitive Serverless Framework for the Cloud-Edge Continuum
 Project Acronym: SovereignEdge.Cognit
 Call: HORIZON-CL4-2022-DATA-01-02
 Grant Agreement: 101092711
 WP number and Title: WP3. Distributed FaaS Model for Edge Application Development
 Nature: R: Report
 Dissemination Level: PU: Public
 Version: 1.0
 Contractual Date of Delivery: 31/03/2024
 Actual Date of Delivery: 30/04/2024
 Lead Author: Idoia de la Iglesia (Ikerlan)
 Authors: Monowar Bhuyan (UMU), Malik Bouhou (CETIC), Aritz Brosa (Ikerlan), Sébastien

 Dupont (CETIC), Aitor Garciandia (Ikerlan), Torsten Hallmann (SUSE), Johan
 Kristiansson (RISE), Martxel Lasa (Ikerlan), Marco Mancini (OpenNebula), Alberto
 P. Martí (OpenNebula), Philippe Massonet (CETIC), Nikolaos Matskanis (CETIC),
 Daniel Olsson (RISE), , Goiuri Peralta (Ikerlan), Samuel Pérez (Ikerlan), Thomas
 Ohlson Timoudas (RISE), Paul Townend (UMU), Iván Valdés (Ikerlan), Constantino
 Vázquez (OpenNebula), Daniel Clavijo (OpenNebula), Jorge Lobo (OpenNebula),
 Michal Opala (OpenNebula).

 Status: Submitted

 Document History

 Version Issue Date Status 1 Content and changes
 0.1 22/04/2024 Draft Initial Draft
 0.2 29/04/2024 Peer-Reviewed Reviewed Draft
 1.0 30/04/2024 Submitted Final Version

 Peer Review History

 Version Peer Review Date Reviewed By
 0.1 29/04/2024 Per-Olov Östberg (UMU)
 0.1 29/04/2024 Antonio Álvarez (OpenNebula)

 Summary of Changes from Previous Versions

 First Version of Deliverable D3.2

 1 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

 Version 1.0 30 April 2024 Page 2 of 36

https://cordis.europa.eu/project/id/101092711

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Executive Summary

 This is the second “COGNIT FaaS Model - Scientific Report” that has been produced in WP3
 “Distributed FaaS Model for Edge Application Development”. It describes in detail the
 progress of the software requirements that have been active during the Second Research
 & Innovation Cycle (M10-M15) in connection with these main components of the COGNIT
 Framework:

 Device Client

 ● SR1.1 Interface with Provisioning Engine:

 Implementation of the communication with the Provisioning Engine.

 ● SR1.2 Interface with Serverless Runtime:

 Implementation of the communication of with the Serverless Runtime

 ● SR1.3 Programming languages:

 Support for different programming languages.

 Serverless Runtime

 ● SR2.1 Secure and Trusted FaaS Runtimes:

 Automated building of secure and trusted images (vulnerability scans, security
 assessment) related to different flavours of FaaS Runtimes.

 Provisioning Engine

 ● SR3.1 Provisioning Interface for the Device to manage Serverless Runtimes:

 Provide an interface to the Device asking for a Serverless Runtime to offload
 functions and data transfer on any resource of the cloud-edge continuum.

 Secure and Trusted Execution of Computing Environments

 ● SR6.1 Advanced Access Control:

 Implement policy-based access control to support security policies on
 geographic zones that define a security level for specific areas.

 ● SR6.2 Confidential Computing:

 Enable privacy protection for the FaaS workloads at the hardware level using
 Confidential Computing (CC) techniques.

 This deliverable has been released at the end of the Second Research & Innovation Cycle
 (M15), and will be updated with incremental releases at the end of each research and
 innovation cycle in M21, M27, and M33.

 Version 1.0 30 April 2024 Page 3 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Table of Contents

 Abbreviations and Acronyms 5

 1.Device Client 6

 [SR1.1] Interface with Provisioning Engine 6

 [SR1.2] Interface with Serverless Runtime 10

 [SR1.3] Programming languages 11

 2. Serverless Runtime 22

 [SR2.1] Secure and Trusted FaaS Runtimes 22

 3. Provisioning Engine 26

 [SR3.1] Provisioning Interface for the Device to manage Serverless Runtimes 26

 4. Secure and Trusted Execution of Computing Environments 33

 [SR6.1] Advanced Access Control 33

 [SR6.2] Confidential Computing 36

 Version 1.0 30 April 2024 Page 4 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Abbreviations and Acronyms

 AI Artificial Intelligence

 API Application Programming Interface

 CORS Cross Origin Resource Sharing

 CPU Central Processing Unit

 DaaS Data as a Service

 DC Device Client

 FaaS Function as a Service

 GDPR General Data Protection Regulation

 HOTP HMAC based One Time Password

 HTTP Hypertext Transfer Protocol

 HMAC Hash based Message Authentication Code

 HW Hardware

 IAM Identity and Access Management system

 IP Internet Protocol

 JSON Javascript Object Notation

 JWT JSON Web Token

 LDAP Lightweight Directory Access Protocol

 OAuth2.0 Open Authentication 2.0

 PE Provisioning Engine

 REST Representational State Transfer

 SAML Security Assertion Markup Language

 SDK Software Development Kit

 SPI Service Provider Interfaces

 SR Serverless Runtime (with no number)

 SRx Software Requirement (with a number associated, e.g.: SR1.1)

 SSL Secure Sockets Layer

 TEE Trusted Execution Environments

 TLS Transport Layer Security

 TOTP Time based One Time Password

 VM Virtual Machine

 YAML Yaml Ain’t a markup language

 Version 1.0 30 April 2024 Page 5 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 1.Device Client

 [SR1.1] Interface with Provisioning Engine

 Description

 The Device Runtime is the component that enables devices to communicate with the
 COGNIT Platform to perform offloading of tasks. This component communicates with the
 Provisioning Engine to create/retrieve/update/delete Serverless Runtimes. It
 communicates with the provided FaaS Runtime to perform offloading of functions and
 uploading of content to the DaaS Runtime, if configured.

 The Device Runtime will be delivered as a library with implementations in C and Python
 that abstracts uploading tasks from the internal application protocol by offering a
 user-friendly API.

 The interface with the Provisioning Engine establishes communication with the COGNIT
 Framework, allowing the user’s device to access its permitted resources.

 Architecture & Components

 ● Python version of Device Runtime

 The update details of the Python version can be seen in CHANGELOG file of the
 GitHub repository.

 Mainly the Update method has been added, in order to allow the Device Client
 perform changes in the requirements of the User application, so the VM that serves
 the Serverless Runtime can be migrated within the COGNIT Testbed.

 Another feature added was the default Geolocation of the device, based on tracing
 of its IP address. Also this Python SDK allows the user to specify any other
 Geolocation the user may want to add (from an external geolocation source, such
 as a GPS antenna) as shown in one of the articles of Wiki documentation of its
 GitHub repository. This information fills the DeviceInfo.GEOGRAPHIC_LOCATION of
 Table 1.1.

 Moreover, the measured latency in the communication between the Device Client
 and the Provisioning Engine is being sent in the M15 release version, so the
 associated Serverless Runtime is aware of this metric. This information fills the
 DeviceInfo.LATENCY_TO_PE of Table 1.1 .

 Last but not least, the hash of the function to be offloaded is computed before
 sending the offloading request, so the function itself gets registered with a unique
 ID within the COGNIT infrastructure.

 The first step to establish connection with the COGNIT Framework is to be able to
 communicate with the Provisioning Engine, which will specify the Serverless
 Runtime to be used by the Device Client, provided that the credentials of the
 device are validated as able to interact with the Framework.

 Version 1.0 30 April 2024 Page 6 of 36

https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/blob/main/CHANGELOG.md
https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/wiki/how_to_define_sr_configuration

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Figure 1.1. Block diagram of Python version of Device Runtime’s modules

 Figure 1.2. Block diagram of C version of Device Runtime

 ● C version of Device Runtime

 Regarding the C version of the Device Runtime, as shown in Figure 1.2 , it is very
 similar to the Python version, although there are some differences. Apart from the
 way of defining the function to be offloaded as can be seen in one of the examples
 provided in the GitHub repository , where function parameters need to be defined
 as “IN” or “OUT”, the main difference with the Python version is that the HTTP
 client logic is handed over to the user application, as its logic is directly linked to
 the Platform where the application needs to be running, which is usually a very
 constrained device, hence the client would need to be customised (generally
 speaking) within this device.

 Version 1.0 30 April 2024 Page 7 of 36

https://github.com/SovereignEdgeEU-COGNIT/device-runtime-c/blob/fc974d3726d7514fb304f8d63197d1ca206a49c5/examples/minimal-offload-sync-example.c#L196

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 The other components of the private API, such as FaaS Parser implements all the
 needed logic for the process of serialisation of a given function that will be
 offloaded to the Serverless Runtime and to format specific JSONs to internal
 library structures for the correct execution of the function in C. Similar to SR Parser
 (shown in Figure 1.2) that serialises the Serverless Runtime configuration.

 The Offload_fc component generates the function to offload and the params in the
 string format, all in compliance with the format that the C executor is expecting in
 the Serverless Runtime.

 Data Model

 The data model of the interaction with the Provisioning Engine defines all the fields
 expected by the Provisioning Engine for requests and responses.
 The last attribute called Serverless Runtime is the type of object that encompasses the
 rest of the attributes of the following table:

 Attribute Description Fields Type

 FaasState String describing the
 state of the Serverless
 Runtime.

 PENDING = “PENDING”
 RUNNING = “RUNNING”

 Enum

 FaaSConfig Object containing
 information about the
 requirements of the
 Serverless Runtime (CPU,
 MEM, …)

 CPU: int (optional)
 MEMORY: int (optional)
 DISK_SIZE: str (optional)
 FLAVOUR: str
 ENDPOINT: str (optional)
 STATE: FaaSState
 VM_ID: str (optional)

 Inherited from
 pydantic’s
 BaseModel

 Scheduling String describing the
 policy applied to
 scheduling. Eg: “energy,
 latency” will optimise the
 placement according to
 those two criteria.

 POLICY: str
 REQUIREMENTS: str

 Inherited from
 pydantic’s
 BaseModel

 DeviceInfo Information related to
 the device where the
 Serverless Runtime is
 being hosted.

 LATENCY_TO_PE: float
 GEOGRAPHIC_LOCATION: str

 Inherited from
 pydantic’s
 BaseModel

 ServerlessR
 untime

 Definition of the
 Serverless Runtime to
 communicate to the PE.

 NAME: str
 ID: int
 FAAS: FaaSConfig
 DAAS: DaaSconfig (optional)
 SCHEDULING: Scheduling
 (optional)
 DEVICE_INFO: DeviceInfo
 (optional)

 Inherited from
 pydantic’s
 BaseModel

 Table 1.1. Data Model defining basic Serverless Runtime

 Version 1.0 30 April 2024 Page 8 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 API & Interfaces

 The novelty of this development cycle is the Update method, which as mentioned has
 been added to the Device Client’s API (marked in bold).

 Description Method Parameters Return Type

 Enables the developer
 to establish a Serverless
 Runtime context to be
 used in the application
 being run.

 create
 Valid CognitConfig
 object.

 StatusCode.

 Get the current
 Serverless Runtime
 status (Property)

 status - FaaSState

 Updates the
 scheduling and device
 info fields of the
 associated Serverless
 Runtime

 update

 Update Scheduling
 and Device_info to
 associated Serverless
 Runtime.

 StatusCode

 Delete the current
 Serverless Runtime
 context

 delete
 Delete the current
 Serverless Runtime
 context

 Nothing

 Table 1.2. API defining the Device Client’s interaction with the Provisioning Engine.

 Version 1.0 30 April 2024 Page 9 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 [SR1.2] Interface with Serverless Runtime

 Description

 The novelty of this development cycle is the addition of the function hash.

 Data Model

 The data structures defining the possible inputs and responses from/towards a given SR,
 from the Device Client’s standpoint. The function hash addition is remarked in bold letters.

 Attribute Description Fields Type

 status_exec Execution status OK
 WORKING
 NOT_OK

 Enum

 Param Parameter
 definition.

 type: str
 var_name: str
 value: str # Coded b64
 mode: str

 Inherits from
 pydantic BaseModel

 ExecSyncParams Synchronously
 executed function’s
 details, comprising
 language of
 function, function
 itself, its parameters
 and function’s hash .

 lang: str
 fc: str
 fc_hash: str
 params: list[str]

 Inherits from
 pydantic BaseModel

 ExecAsyncParams Asynchronously
 executed function’s
 details, comprising
 language of
 function, function
 itself, its parameters
 and function’s hash .

 lang: str
 fc: str
 fc_hash: str
 params: list[str]

 Inherits from
 pydantic BaseModel

 FaasUuidStatus State and result (if
 any) of a given SR.

 state: str
 result: str (Optional)

 Inherits from
 pydantic BaseModel

 … (other elements
 of the whole Data
 Model were
 skipped)

 Table 1.3. Data Model defining the Device Client’s interaction with the Serverless Runtime.

 API & Interfaces

 The API of this interface didn’t have any modification from the previous development
 cycle.

 Version 1.0 30 April 2024 Page 10 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 [SR1.3] Programming languages

 Description

 In this version an extended Python version of the Device Client has been implemented
 (representing interpreted languages), and first version of the C version for more easily
 integrating COGNIT with constrained devices.

 Architecture & Components

 Architecture and components are similar in both (Python and C) versions, although there
 are certain modifications due to language (C) intrinsic constraints.

 Python Specification

 Class Description

 CognitConfig
 The global configuration to access the COGNIT Platform
 (Provisioning Engine IP and port, and needed credentials)
 will be stored in an instance of this class.

 ServerlessRuntimeContext
 Represents the Serverless Runtime context and provides
 runtime operations. This is a session with an assigned
 Serverless Runtime for offloading functions.

 ServerlessRuntimeConfig Represents the requirements for the Serverless Runtime.

 ServerlessRuntimeStatus
 Represents the status of the Serverless Runtime. Possible
 values: FAILED, READY, REQUESTED.

 StatusCode
 Represents the status code for an operation. Possible
 values: ERROR, SUCCESS.

 Table 1.4. Classes associated with the SDK

 Method Description Arguments Return Type

 configure

 Enables the developer to configure
 the endpoint and credentials to
 connect to the COGNIT Platform
 instance. By default it will be
 obtained from env vars

 Endpoint: The COGNIT
 Platform endpoint that
 will be used

 None

 Table 1.5. Methods linked to CognitConfig

 The ServerlessRuntime Context provides the following functions to interact with the serverless
 runtime:

 Version 1.0 30 April 2024 Page 11 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Method Description Arguments Return Type

 create

 Enables the developer to
 establish a Serverless Runtime
 context to be used in the
 application being run.

 ServerlessRuntimeConf
 ig: specifying the initial
 configuration in terms
 of HW requirements,
 flavour, scheduling and
 device information.

 StatusCode

 call_async
 Perform the offload of a
 function to the COGNIT Platform
 without blocking

 func: Callable
 args: Union[List[Any],
 Tuple[Any, ...], Dict[str,
 Any]]

 AsyncExecResponse

 call_sync
 Perform the offload of a
 function to the COGNIT Platform
 and wait for the result

 func: Callable
 args: Union[List[Any],
 Tuple[Any, ...], Dict[str,
 Any]]

 ExecResponse

 wait

 Wait for an asynchronous
 execution to finish (becoming
 the workflow of the function in
 synchronous). If the timeout is
 reached it will continue having
 asynchronous execution.

 Id :AsyncExecId,
 timeout: seconds to
 wait for a response

 AsyncExecResponse

 update
 Updates the scheduling and
 device info fields of the
 associated Serverless Runtime

 ServerlessRuntimeConf
 ig: Specifying the new
 configuration in terms
 of scheduling and
 device information.

 StatusCode

 delete
 Delete the current
 ServerlessRuntime context

 - -

 status
 Get the current Serverless
 Runtime status (Property)

 - ServerlessRuntime

 Table 1.6. List of methods of SDK.

 C Specification

 Class Description

 cognit_config_t
 A struct which holds the global configuration of the library which
 includes the config to access to the COGNIT Platform instance.

 serverless_runtime_context_t
 Represents the Serverless Runtime context and needs to be
 provided to the Serverless Runtime Context module to execute
 runtime operations.

 Version 1.0 30 April 2024 Page 12 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 serverless_runtime_conf_t
 Represents the configuration for the Serverless Runtime
 (flavours, requirements…).

 serverless_runtime_cli_t Stores the endpoints of a possible task.

 e_faas_state_t Represents the status of the Serverless Runtime. Possible values:
 ERROR, PENDING, RUNNING, NO_STATE.

 e_status_code_t Represents the status code for an operation. Possible values:
 ERROR, SUCCESS, PENDING.

 exec_faas_params_t Represents the function to be offloaded with the params.

 Table 1.7. Structures associated with the SDK

 The ServerlessRuntime Context provides the following functions to interact with the serverless
 runtime:

 Method Description Arguments Return Type

 serverless_runtime_ct

 x_init

 Enables the developer to
 configure the endpoint

 and credentials to
 connect to the COGNIT

 Platform instance.

 Cognit_config_t
 e_status_code_t

 serverless_runtime_ct

 x_create

 Enables the developer to
 communicate to Prov
 Engine and create a
 runtime based on a
 Serverless Runtime

 specifications

 Serverless_runtime
 _contex_t,

 Serverless_runtime
 _conf_t

 e_status_code_t

 serverless_runtime_ct

 x_status
 Enables the developer to

 get the current
 Serverless Runtime

 status

 Serverless_runtime
 _contex_t

 e_faas_state_t

 Version 1.0 30 April 2024 Page 13 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 serverless_runtime_ct

 x_call_sync
 Perform the offload of a
 function to the COGNIT
 Platform and wait for

 the result

 Serverless_runtime
 _contex_t

 Exec_faas_params_t
 Exec_response_t

 e_status_code_t

 serverless_runtime_ct

 x_call_async

 Perform the offload of a
 function to the COGNIT

 Platform without
 blocking (with the

 integration of Phoenix
 systems)

 Serverless_runtime
 _contex_t

 Exec_faas_params_t
 Async_exec_respon

 se_t

 e_status_code_t

 serverless_runtime_ct

 x_wait_for_task Wait for a task id to be
 executed

 Serverless_runtime
 _cli_t

 Async_task_id
 timeout_ms

 Async_exec_respon
 se_t

 int

 serverless_runtime_de

 lete
 Delete the current
 ServerlessRuntime

 context

 Serverless_runtime
 _contex_t

 e_status_code_t

 Table 1.8. List of methods of SDK.

 Data Model

 The data models for the Python and the C version of the API are semantically equivalent..

 API & Interfaces

 For consistency it needs to implement the same API endpoints with equally formatted
 bodies.

 Python SDK usage example

 As specified in the GitHub README for the Device Client, there are several steps to be
 followed in order to build the Python module (named as “cognit”) . Once done with the
 “ Setting up COGNIT module ” section, the user should be able to use it freely.

 In this version (M15), the Update method is introduced in the Python version of the client,
 which allows the user to create a Serverless Runtime and define the initial placement of
 the associated VM based on the requirements provided by the user app’s request. With the
 Update method the user is able to change the requirements of the associated Serverless
 Runtime (VM), and it may trigger a rescheduling of the SR causing a migration of it,
 depending on the constraints of the underlying infrastructure.

 Version 1.0 30 April 2024 Page 14 of 36

https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/blob/main/README.md
https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/blob/main/README.md#setting-up-cognit-module

 Python

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Showcasing the way to use the Python module (which implements all the methods above
 mentioned in the SDK specification) is the create_offl_update_offl example under the
 examples subfolder in the repository, which creates a request for a Serverless Runtime to
 the corresponding Provisioning Engine with initial placement, and once it is ready it
 updates the requirements of it, which may trigger a rescheduling of the associated SR.

 # Configure the Serverless Runtime requirements
 sr_conf = ServerlessRuntimeConfig()
 sr_conf.name = "Example Serverless Runtime"
 sr_conf.scheduling_policies = [EnergySchedulingPolicy(30)]
 # This is where the user can define the FLAVOUR to be used within COGNIT to
 deploy the FaaS node.
 sr_conf.faas_flavour = "<Flavour_to_be_used>"

 # Request the creation of the Serverless Runtime to the COGNIT Provisioning
 Engine
 try :

 # Set the COGNIT Serverless Runtime instance based on 'cognit.yml'
 config file

 # (Provisioning Engine address and port...)
 my_cognit_runtime =

 ServerlessRuntimeContext(config_path= "./examples/cognit.yml")
 # Perform the request of generating and assigning a Serverless Runtime

 to this Serverless Runtime context.
 ret = my_cognit_runtime.create(sr_conf)

 except Exception as e:
 print ("Error in config file content: {}" . format (e))
 exit(1)

 # Wait until the runtime is ready

 # Checks the status of the request of creating the Serverless Runtime, and
 sleeps 1 sec if still not available.
 while my_cognit_runtime.status != FaaSState.RUNNING:

 time.sleep(1)

 print ("COGNIT Serverless Runtime ready!")

 # Update the Device info and requirements of the SR.
 sr_conf = ServerlessRuntimeConfig()
 sr_conf.name = "Updated Serverless Runtime"
 sr_conf.scheduling_policies = [EnergySchedulingPolicy(80)]

 result = my_cognit_runtime.call_sync(sum , 2 , 2)
 print ("Pre-Update offloaded function result" , result)

 ## Use this if you want to update any SR specifying the ID.
 # This will update the SR of the context.
 my_cognit_runtime.update(sr_conf)

 Version 1.0 30 April 2024 Page 15 of 36

https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/blob/sched_tests/examples/create_offl_update_offl.py

 C/C++

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 # First, check status is != RUNNING, as there is some lag when reporting in
 UPDATING state.
 while my_cognit_runtime.status != FaaSState.UPDATING:

 print (f"VM state: {my_cognit_runtime.status}")
 time.sleep(1)

 while my_cognit_runtime.status != FaaSState.RUNNING:
 print (f"VM state: {my_cognit_runtime.status}")
 time.sleep(3)

 print ("COGNIT Serverless Runtime ready after Updated!")

 # Example offloading a function call to the Serverless Runtime

 # call_sync sends to execute sync.ly to the already assigned Serverless
 Runtime.
 # First argument is the function, followed by the parameters to execute it.
 result = my_cognit_runtime.call_sync(mult, 4 , 5)

 print ("Post-Update offloaded function result" , result)

 # This sends a request to delete this COGNIT context.
 my_cognit_runtime.delete()

 print ("COGNIT Serverless Runtime deleted! ")

 C SDK usage example

 # include <stdio.h>
 # include "cognit_http.h"
 # include <curl/curl.h>
 # include <stdlib.h>
 # include <string.h>
 # include <serverless_runtime_context.h>
 # include <unistd.h>
 # include <offload_fc_c.h>
 # include <faas_parser.h>
 # include <cognit_http.h>
 # include <logger.h>
 # include <ip_utils.h>

 FUNC_TO_STR(
 mult_fc,
 void mult(int a, int b, float * c) {

 *c = a * b;
 })

 Version 1.0 30 April 2024 Page 16 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 size_t handle_response_data_cb(void * data_content, size_t size, size_t
 nmemb, void * user_buffer)
 {

 size_t realsize = size * nmemb;
 http_response_t* response = (http_response_t*)user_buffer;

 if (response->size + realsize >=
 sizeof (response->ui8_response_data_buffer))

 {
 COGNIT_LOG_ERROR("Response buffer too small");
 return 0 ;

 }

 memcpy(&(response->ui8_response_data_buffer[response->size]),
 data_content, realsize);

 response->size += realsize;
 response->ui8_response_data_buffer[response->size] = '\0' ;

 return realsize;
 }

 int my_http_send_req_cb(const char * c_buffer, size_t size, http_config_t*
 config)
 {

 CURL* curl;
 CURLcode res;
 long http_code = 0 ;
 struct curl_slist* headers = NULL ;
 memset(&config->t_http_response.ui8_response_data_buffer, 0 ,

 sizeof (config->t_http_response.ui8_response_data_buffer));
 config->t_http_response.size = 0 ;

 curl_global_init(CURL_GLOBAL_DEFAULT);

 curl = curl_easy_init();
 if (curl)
 {

 // Set the request header
 headers = curl_slist_append(headers, "Accept: application/json");
 headers = curl_slist_append(headers, "Content-Type:

 application/json");
 headers = curl_slist_append(headers, "charset: utf-8");

 if (curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers) != CURLE_OK
 // Configure URL and payload
 || curl_easy_setopt(curl, CURLOPT_URL, config->c_url) !=

 CURLE_OK
 // Set the callback function to handle the response data
 || curl_easy_setopt(curl, CURLOPT_WRITEDATA,

 (void *)&config->t_http_response) != CURLE_OK

 Version 1.0 30 April 2024 Page 17 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 || curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION,
 handle_response_data_cb) != CURLE_OK

 || curl_easy_setopt(curl, CURLOPT_TIMEOUT_MS,
 config->ui32_timeout_ms) != CURLE_OK)

 {
 COGNIT_LOG_ERROR("[hhtp_send_req_cb] curl_easy_setopt()

 failed");
 return -1;

 }

 // Find '[' or ']' in the URL to determine the IP version
 if (strchr(config->c_url, '[') != NULL

 && strchr(config->c_url, ']') != NULL)
 {

 if (curl_easy_setopt(curl, CURLOPT_IPRESOLVE, CURL_IPRESOLVE_V6)
 != CURLE_OK)

 {
 COGNIT_LOG_ERROR("[hhtp_send_req_cb]

 curl_easy_setopt()->IPRESOLVE_V6 failed");
 return -1;

 }
 }

 if (strcmp(config->c_method, HTTP_METHOD_GET) == 0)
 {

 if (curl_easy_setopt(curl, CURLOPT_HTTPGET, 1L) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_USERNAME,

 config->c_username) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_PASSWORD,

 config->c_password) != CURLE_OK)
 {

 COGNIT_LOG_ERROR("[hhtp_send_req_cb]
 curl_easy_setopt()->get() failed");

 return -1;
 }

 }
 else if (strcmp(config->c_method, HTTP_METHOD_POST) == 0)
 {

 if (curl_easy_setopt(curl, CURLOPT_POST, 1L) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "POST") !=

 CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, size) !=

 CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_POSTFIELDS, c_buffer) !=

 CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_USERNAME,

 config->c_username) != CURLE_OK
 || curl_easy_setopt(curl, CURLOPT_PASSWORD,

 config->c_password) != CURLE_OK)
 {

 Version 1.0 30 April 2024 Page 18 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 COGNIT_LOG_ERROR("[hhtp_send_req_cb]
 curl_easy_setopt()->post() failed");

 return -1;
 }

 }
 else if (strcmp(config->c_method, HTTP_METHOD_DELETE) == 0)
 {

 if (curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "DELETE") !=
 CURLE_OK

 || curl_easy_setopt(curl, CURLOPT_USERNAME,
 config->c_username) != CURLE_OK

 || curl_easy_setopt(curl, CURLOPT_PASSWORD,
 config->c_password) != CURLE_OK)

 {
 COGNIT_LOG_ERROR("[hhtp_send_req_cb]

 curl_easy_setopt()->post() failed");
 return -1;

 }
 }
 else
 {

 COGNIT_LOG_ERROR("[hhtp_send_req_cb] Invalid HTTP method");
 return -1;

 }

 // Make the request
 res = curl_easy_perform(curl);

 curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &http_code);
 COGNIT_LOG_ERROR("HTTP err code %ld " , http_code);

 // Check errors
 if (res != CURLE_OK)
 {

 long http_code = 0 ;
 curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &http_code);
 COGNIT_LOG_ERROR("curl_easy_perform() failed: %s" ,

 curl_easy_strerror(res));
 COGNIT_LOG_ERROR("HTTP err code %ld " , http_code);

 }

 // Clean and close CURL session
 curl_easy_cleanup(curl);

 }

 config->t_http_response.l_http_code = http_code;

 // Clean global curl configuration
 curl_global_cleanup();
 free(headers);

 Version 1.0 30 April 2024 Page 19 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 return (res == CURLE_OK) ? 0 : -1;
 }

 int main(int argc, char const* argv[])
 {

 cognit_config_t t_my_cognit_config;
 serverless_runtime_context_t t_my_serverless_runtime_context;
 serverless_runtime_conf_t t_my_serverless_runtime_conf;
 exec_response_t t_exec_response;
 exec_faas_params_t exec_params = { 0 };

 // Initialize the config for the serverless runtime context instance
 t_my_cognit_config.prov_engine_endpoint = "" ;
 t_my_cognit_config.prov_engine_pe_usr = "" ;
 t_my_cognit_config.prov_engine_pe_pwd = "" ;
 t_my_cognit_config.prov_engine_port = 0 ;
 t_my_cognit_config.ui32_serv_runtime_port = 0 ;

 serverless_runtime_ctx_init(&t_my_serverless_runtime_context,
 &t_my_cognit_config);

 // Configure the initial serverless runtime requirements
 t_my_serverless_runtime_conf.name

 = "my_serverless_runtime" ;
 t_my_serverless_runtime_conf.faas_flavour

 = "DC_C_version_tests" ;

 t_my_serverless_runtime_conf.m_t_energy_scheduling_policies.ui32_energy_perc
 entage = 50 ;

 if (serverless_runtime_ctx_create(&t_my_serverless_runtime_context,
 &t_my_serverless_runtime_conf) != E_ST_CODE_SUCCESS)

 {
 printf("Error configuring serverless runtime\n");
 return -1;

 }

 // Check the serverless runtime status

 while (true)
 {

 if (serverless_runtime_ctx_status(&t_my_serverless_runtime_context)
 == E_FAAS_STATE_RUNNING)

 {
 printf("Serverless runtime is ready\n");
 break ;

 }

 printf("Serverless runtime is not ready\n");

 sleep(1);

 Version 1.0 30 April 2024 Page 20 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 }

 // Offload the function exection to the serverless runtime
 // This will use the callback function my_http_send_req to send the

 request

 const char * includes = INCLUDE_HEADERS(# include <stdio.h> \n);
 offload_fc_c_create(&exec_params, includes, mult_fc_str);
 // Param 1
 offload_fc_c_add_param(&exec_params, "a" , "IN");
 offload_fc_c_set_param(&exec_params, "int" , "3");
 // Param 2
 offload_fc_c_add_param(&exec_params, "b" , "IN");
 offload_fc_c_set_param(&exec_params, "int" , "4");
 // Param 3
 offload_fc_c_add_param(&exec_params, "c" , "OUT");
 offload_fc_c_set_param(&exec_params, "float" , NULL);

 serverless_runtime_ctx_call_sync(&t_my_serverless_runtime_context,
 &exec_params, &t_exec_response);

 COGNIT_LOG_INFO("Result: %s" , t_exec_response.res_payload);

 // Free the resources
 faasparser_destroy_exec_response(&t_exec_response);
 offload_fc_c_destroy(&exec_params);

 COGNIT_LOG_INFO("Deleting serverless runtime");

 while
 (prov_engine_delete_runtime(&t_my_serverless_runtime_context.m_t_prov_engine
 _cli, t_my_serverless_runtime_context.m_t_serverless_runtime.ui32_id,
 &t_my_serverless_runtime_context.m_t_serverless_runtime) != 0)

 {
 COGNIT_LOG_ERROR("Error deleting serverless runtime");
 sleep(1);

 }

 COGNIT_LOG_INFO("Serverless runtime deleted");

 return 0 ;
 }

 Version 1.0 30 April 2024 Page 21 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 2. Serverless Runtime

 [SR2.1] Secure and Trusted FaaS Runtimes

 Description

 The FaaS component of the Serverless Runtime is the environment in which functions to
 be offloaded are executed within the COGNIT Framework by the machine that provides
 the Provisioning Engine, as already described in the previous cycle’s Scientific Report.

 Various runtime configurations are available for deployment to meet the specific
 requirements of each function. These runtimes communicate with the Device Client,
 offloading the designated function through a RESTful API. The system supports the
 execution of functions written in both Python and C languages.

 However, the runtime’s image must contain all the software requirements for the
 execution of the function. Regarding the management of the images needed by the
 different use cases, an effort has been put in place which so far has not been linked to any
 automated solution. In order to address that, there were identified many weak points on
 the current version of COGNIT that need to be improved throughout the next
 development cycles, although some actions were taken already in the end of the current
 one. Next steps related to these issues are mentioned in the D2.3 (section 4. Priorities for
 Third Research & Innovation Cycle (M16-M21), related to Open Build Service (OBS)) of the
 current COGNIT release.

 Moreover, the SR needs to expose some information about function execution, allowing
 the AI orchestrator to get key information (Prometheus metric) about them, so the
 orchestration can be more data driven. The example shown in Figure 2.1 is representative
 of a function execution offloaded by an user app through the Device Client in a given
 Serverless Runtime that was created in the Testbed infrastructure used in the project. The
 IPv6 address (that ends in ‘::14’) shown in the browser’s address bar is the IP of the
 Serverless Runtime that was assigned to that particular Device Client, and the 9100 value
 followed by a colon is the port in which the SR exporter is exposing those metrics. This
 figure depicts the Prometheus metrics structure and the meaning of each field exposed by
 the SR exporter, as shown in Figure 2.2 .

 Version 1.0 30 April 2024 Page 22 of 36

https://build.opensuse.org/

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Figure 2.1. Prometheus metric example.

 Describing the content of Figure 2.1 , the ‘func_exec_time’ is the metric name, and the
 value is a Prometheus Gauge data type, showing a float-like value that represents the
 function execution time in seconds. The metric labels provide additional information about
 it, being:

 ➔ end_time = "Mon Mar 18 11:23:13 2024" , a timestamp that defines when the
 function finished executing.

 ➔ func_hash = "dcf7b3aafca4b048d63c5b296f76e3988e44f9592d0b732fb8e7b0ae5f2c
 26cb" , the hash of the function that defines the bytecode of the function that was
 offloaded.

 ➔ func_type = Either "sync" or “async” depending on the type of function.
 ➔ param_l_0 = "xx" , The list of parameters’ size in bytes.
 ➔ param_l_n = "yy" , The nth parameter’s size in bytes.
 ➔ start_time = "Mon Mar 18 11:23:06 2024" , a timestamp that states when the

 function execution started.
 ➔ vm_id = "1548" , the VM_ID identifies in which SR within the COGNIT infrastructure

 the function was executed.

 Architecture & Components

 The Serverless Runtime provides a public FastAPI REST Server that listens to FaaS 2

 requests. As illustrated in Figure 2.2, multiple components are involved in the execution of
 the task offloading function:

 1. FaaS Models: Provide the data structures needed for the requests and internal
 communication between function calls.

 2 https://fastapi.tiangolo.com

 Version 1.0 30 April 2024 Page 23 of 36

https://fastapi.tiangolo.com/

 Unset

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 2. FaaS Parser: It is responsible for serialising the offloaded functions and for
 deserializing the results returned from the Serverless Runtime.

 3. Logger: Provides its own log structure based on different levels of logging.
 4. FaaS Manager: Responsible for adding an asynchronous task offloading and

 managing its execution status.
 5. Dask-based Event Loop: Provides parallel task execution and scalability of data

 processing applications.
 6. C Executor: Groups all the logic needed to execute C language with Cling, and 3

 interactive C interpreter.
 7. Py Executor: Groups the logic needed to execute Python language.

 Figure 2.2. Block Diagram of Serverless runtime modules.

 The FAST API REST Server is accessible to the user and makes use of the functionalities
 given by the private API components, which are abstracted from the user for convenience.

 Data Model

 The only modification in this Data Model with respect to the earlier version, was the
 addition of fc_hash field to enable the reception of the hash of the function that had been
 offloaded (highlighted in bold):

 {
 "lang": “string”,

 3 https://github.com/root-project/cling
 https://root.cern/cling/

 Version 1.0 30 April 2024 Page 24 of 36

https://github.com/root-project/cling
https://root.cern/cling/

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 "fc": "string",
 "fc_hash": "string",
 "params": [“string”, “string”, “string”]

 }

 Table 2.1 shows the addition from the D3.1 document.

 Attribute Description Value

 lang String describing the programming
 language of the code to be
 offloaded

 Base64 string.

 fc String describing the function to be
 offloaded coded in base64.

 Base64 string.

 fc_hash Defines the hash of the function,
 which could be used as its
 identifier.

 String, with HEX characters.

 params Array of strings describing the in/out
 parameters of the function coded in
 base64.

 Array of base64 strings.

 result String describing the result of the
 function to be offloaded with the
 parameters given.

 String.

 faas_uuid String describing the UUID of the
 task to process asynchronously.

 String.

 state String describing the execution of
 the function.

 WORKING,
 READY,
 FAILED.

 Table 2.1. Data model showing the data structures of the Serverless Runtime.

 API & Interfaces

 The API of the Serverless Runtime has not changed in this development cycle.

 Version 1.0 30 April 2024 Page 25 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 3. Provisioning Engine

 [SR3.1] Provisioning Interface for the Device to manage Serverless Runtimes

 Description

 The Provisioning Engine is a software component that acts as a single point of contact for
 Application Device Runtimes that request access to Serverless Runtimes, are comprised of
 a FaaS Runtime to offload computation through the FaaS paradigm, and/or a DaaS
 Runtime to offload data into the cloud. Once this component receives a request for a
 Serverless Runtime it communicates with the Cloud-Edge Manager, waits for the
 Serverless Runtime to be available and returns the endpoints for the Device Runtime to
 communicate with.

 In this second development cycle the following changes were made to this component:

 ● Slight change in the architecture, the Translation Module was split into two
 modules.

 ● A new ERROR attribute was added to the Serverless Runtime JSON description
 document.

 ● The Update operation over a Serverless Runtime has been implemented.
 ● The communication with the device client has been securitized.

 Architecture & Components

 The Provisioning Engine architecture introduced in D3.1 has been slightly modified to
 decompose the Translator module into two different modules as seen in Figure 3.1,
 Function Module and Runtime Module (old Translator module represented by a black
 dashed rectangle, whereas the whole Provisioning Engine is contained in the orange
 dashed rectangle), as this better captures two different functions of the Translator
 Module and helps to keep the implementation clean.

 Figure 3.1. Provisioning Engine High Level Architecture

 Version 1.0 30 April 2024 Page 26 of 36

 Unset

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 ● Function Module: Translates Serverless Runtime FLAVOUR requirements into
 Cloud-Edge Manager Compute instances operations.

 ● Runtime Module: Translates Serverless Runtime high level requirements into
 Cloud-Edge Manager Multi-Compute instances operations. Handles the Serverless
 Runtime entry persistence in the Cloud-Edge Manager.

 As mentioned in D3.2 the Provisioning Engine runs as a service exposing a REST interface.
 This service, as well as other aspects of the behaviour of the whole component, can be
 configured using a YAML file (provisioning-engine.conf). After testing and bug fixing in this
 second development cycle, new options have been added to allow timeout fine tuning and
 better debug info for troubleshooting. This can be checked in Table 3.1.

 Attribute Value

 host IP to which the Provisioning Engine will bind to listen for incoming
 requests.

 port Port to which the Provisioning Engine will bind to listen for incoming
 requests. Defaults to 2719.

 oneflow_server OpenNebula OneFlow contact information

 timeout Seconds to wait for backend (OpenNebula and OneFlow) responses

 capacity Default capacity values (disk, cpu, memory) for the SR Virtual
 Machines to be used if not specified in the SR creation call

 log Sets the log debug level

 Table 3.1. Provisioning Engine Server Configuration File

 Data Model

 The only addition to the existing JSON description of the Serverless Runtime, as handled
 by the Provision Engine, is the addition of an Error attribute (see Table 3.2) to better
 describe the state of the Serverless Runtime in case of an error.

 {
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "SERVERLESS_RUNTIME": {
 "type": "object",
 "properties": {
 "NAME": {
 "type": "string"

 },
 [...]

 Version 1.0 30 April 2024 Page 27 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 "FAAS": {
 "type": "object",
 "properties": {

 [...]
 “ERROR”: {
 “type”: “string”

 }
 }

 },
 [...]
 }

 }

 Attribute Value

 ERROR The error message of the VM containing the Serverless Runtime.
 This aggregates the error coming from different components of the
 Cloud Edge Manager, namely OpenNebula’s OneFlow and core
 component (oned)

 Table 3.2. New SR attribute in the second development cycle

 API & Interfaces

 The Update operation shown in Table 3.3 has been implemented in this cycle, through
 which an existing Serverless Runtime can be modified. This translates into a change of the
 characteristics of the Virtual Machines containing the Serverless Runtime service in the
 Cloud-Edge Manager.

 Action Verb Endpoint Request Body Response

 Update
 Serverless
 Runtime

 PUT
 /serverless-runt
 imes/{id}

 JSON
 representation of
 the updated
 serverless-runtime
 object

 Status code 200 (OK) with the
 updated
 serverless-runtimeobject

 Table 3.3. Operation implemented in the second development cycle

 The Serverless Runtime properties that can be updated are described in Table 3.4, along
 with the impact on the underlying Cloud-Edge manager resource (Virtual Machine or
 OneFlow Service) that represents the Serverless Runtime.

 Version 1.0 30 April 2024 Page 28 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Attribute Impact

 DAAS/FAAS
 CPU

 Change the physical CPU allocated to this Serverless Runtime DaaS or FaaS
 component

 DAAS/FAAS
 Memory

 Change the memory allocated to this Serverless Runtime DaaS or FaaS
 component

 DAAS/FAAS
 Disk Size

 Change the main disk size allocated to this Serverless Runtime DaaS or FaaS
 component

 NAME Change the name of the Serverless Runtime

 SCHEDULING
 Change the scheduling requirements and policy associated to the Serverless
 Runtime

 DEVICE_INFO
 Change the device details associated with the Serverless Runtime:
 Geolocation and Latency to Provisioning Engine.

 Table 3.4. Serverless Runtime attributes that can be updated

 The new REST API endpoint update operation receives a schema compatible Serverless
 Runtime definition representing the desired state of the Serverless Runtime. The current
 Serverless Runtime state definition is requested from the Cloud-Edge Manager (since the
 Provisioning Engine is a pure stateless component). Both definitions, the current and the
 desired one in the update operation, are then compared to scan differences in the
 supported attributes, defined in Table 3.4, and changes are issued accordingly. These
 changes are of different nature, depending on the attribute that is actually modified:

 ● If the name is different, the document that backs the Serverless Runtime will be
 renamed.

 ● If the CPU is different, a live CPU hotplug operation will be issued to the Virtual
 Machine containing the Serverless Runtime.

 ● If the SCHEDULING and DEVICE_INFO are different, the Serverless Runtime
 document body will be updated and the VMs definitions backing each of the
 Serverless Runtime services will have their instance templates updated as well.
 This way, the scheduler acts upon those properties.

 Version 1.0 30 April 2024 Page 29 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Every time the update call is performed and changes are made to the backing VM, the
 RESCHED flag will be set, and therefore the AI Orchestrator can take care of possible
 migrations.

 Work was carried out in the second development cycle to securitize the access to the
 Provisioning Engine since it has a public facing interface. This was achieved using SSL
 encryption through a reverse proxy based on NGINX, as shown in Figure 3.2. More details
 can be found on how to set this up in the Provisioning Engine Admin guide . 4

 Public Internet
 |
 |

 +----------+----------+
 | <Public IPv4> |
 | <Public IPv6> |
 | vpn-router-lb |
 | 10.10.10.1 |
 +----------+----------+

 |
 |
 | 10.10.10.0/24

 +-----------------+-----------------+
 | | |

 +--------v-------+ +-------v-------+ +-------v-------+
opennebula-		scheduler		provisioning
frontend				engine
10.10.10.2		10.10.10.3		10.10.10.4
 +----------------+ +----------------+ +--------------+

 Figure 3.2. SSL Deployment of the Provisioning Engine

 State Machine

 There are 4 possible states for a Serverless Runtime Virtual Machine, which in turn are a
 mapping from several VM states . All state transitions are depicted in Figure 3.3.

 State Meaning

 PENDING
 Virtual Machine backing the Serverless Runtime is being deployed

 4 https://github.com/SovereignEdgeEU-COGNIT/provisioning-engine/wiki/Admin-Guide#ssl-encryption

 Version 1.0 30 April 2024 Page 30 of 36

https://github.com/SovereignEdgeEU-COGNIT/provisioning-engine/blob/be3950d6c63c84f703e52d380525280fe30977ac/src/server/function.rb#L8-L44
https://github.com/SovereignEdgeEU-COGNIT/provisioning-engine/wiki/Admin-Guide#ssl-encryption

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 RUNNING Virtual Machine backing the Serverless Runtime is currently running

 UPDATING
 Virtual Machine backing the Serverless Runtime is currently being updated,
 for example, a hotplug due to the update operation

 ERROR Maps to any possible failure state on the Virtual Machine backing the
 Serverless Runtime.

 Table 3.5. Serverless Runtime state meaning

 The update operation also contains a fail safe recovery functionality. If an update
 operation is issued to a Serverless Runtime in error state (at least one of the Serverless
 Runtime Virtual Machines in an erroneous state), an attempt to recover the problematic
 Serverless Runtime will be made instead of updating the associated Virtual Machine
 capacity. Ideally this would result in an error recovery, putting the Serverless Runtime
 Virtual Machine on RUNNING. Then the update operation would run as normal and the
 Virtual Machine would go from RUNNING to UPDATING to then RUNNING again. More
 details about the update call in the API documentation .

 Version 1.0 30 April 2024 Page 31 of 36

https://app.swaggerhub.com/apis-docs/dann1/ProvisionEngine/1.0.0#/Serverless%20Runtimes/put_serverless_runtimes__id_

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 Figure 3.3. State Machine for Serverless Runtimes

 Version 1.0 30 April 2024 Page 32 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 4. Secure and Trusted Execution of Computing Environments

 [SR6.1] Advanced Access Control

 During this cycle, we identified the requirements of an Identity and Access Management
 (IAM) mechanism tailored to the needs of the COGNIT Framework and the specific
 challenges of Edge Computing. In a distributed and dynamic environment like COGNIT,
 where computing resources are spread across multiple sites or peripheral devices,
 securing communications and managing identities become critical challenges.

 In this regard, we focused our research on the requirements of distributed deployment,
 identity management, security and privacy, low latency, and scalability. Based on these
 requirements, an analysis of features and technologies was conducted to determine those
 best suited to the COGNIT Framework environment and the constraints of Edge
 Computing.

 We summarised the requirements for an IAM mechanism adapted to the COGNIT
 Framework:

 ● Distributed Deployment: The IAM mechanism must enable distributed
 deployment to meet the needs of an edge computing environment where
 resources are distributed across multiple sites or devices.

 ● Identity Management: The IAM mechanism must effectively manage the identities
 of devices, users, and components by assigning them specific accounts or using
 authentication flows tailored to these components to ensure appropriate
 authentication and authorization.

 ● Security and Privacy: It must provide robust security mechanisms, such as SSL/TLS
 encryption, to protect communications between edge computing devices and IAM
 servers, as well as key and certificate management features to ensure the
 confidentiality of identity and authentication data.

 ● Low Latency: The IAM mechanism should not introduce significant latency in
 authentication and authorization processes, minimising response times to meet the
 critical performance requirements of the edge computing environment.

 ● Scalability: It must be highly scalable to adapt to the scale of the edge computing
 infrastructure, supporting clustering to distribute the load and being capable of
 handling a large number of devices and concurrent users.

 We have also identified certain features and technologies that meet the requirements of
 an IAM mechanism adapted to the COGNIT Framework:

 1. Single-Sign On and Single-Sign Out: Allows users to sign in once to access
 multiple applications, thus facilitating identity management in a distributed
 environment like COGNIT. Additionally, single-sign-out functionality ensures that
 users are automatically logged out from all connected applications when they sign
 out from one.

 Version 1.0 30 April 2024 Page 33 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 2. OpenID Connect: Provides secure and standardised authentication, promoting
 interoperability and compatibility with other systems and services that COGNIT
 may communicate with.

 3. OAuth 2.0: Enables granular and secure authorization of applications, users, and
 devices to control access to COGNIT resources, an environment where security and
 privacy are paramount.

 4. SAML : Facilitates integration with existing authentication systems, simplifying
 device identity management in a heterogeneous environment like COGNIT.

 5. User Federation - Sync users from LDAP and Active Directory servers: Enables
 synchronisation of users from LDAP and Active Directory servers, offering
 centralised identity management and simplifying data synchronisation.

 6. Admin Console for central management of devices, users, roles, role mappings,
 clients, and configuration: Provides a centralised interface for managing devices,
 users, roles, clients, and configuration, thus facilitating administration and
 supervision.

 7. Two-factor Authentication - Support for TOTP/HOTP: Enhances security by
 offering two-factor authentication, crucial for protecting sensitive data and
 resources in COGNIT.

 8. Session management - Admins can view and manage user sessions: Allows
 administrators to view and manage user sessions, providing increased control and
 visibility of devices.

 9. Token mappers - Map devices and user attributes, roles, etc.: Allows mapping of
 user attributes and roles into authentication tokens.

 10. Not-before revocation policies per realm, application, and user: Offers precise
 revocation policies to control access to resources based on time, thus improving
 security and access management in COGNIT.

 11. CORS support - Client adapters have built-in support for CORS: Supports
 resource sharing between different origins, essential for enabling integration with
 certain components of COGNIT.

 12. Service Provider Interfaces (SPI) - A number of SPIs to enable customising
 various aspects of the server: Provides extensible interfaces to customise
 different aspects of the server, allowing adaptation of the IAM solution to the
 specific needs of COGNIT.

 13. Client adapters for Python and C: Offers client adapters for Python and C,
 enabling integration with COGNIT.

 We also validated the three critical communication points within the COGNIT stack:

 1. Device Client to Provisioning Engine:

 Secure communication via JWT and SSL meets the security and privacy
 requirements for this critical interaction. JWT ensures secure verification of the
 device client's identity and authorization, while SSL encryption ensures the
 integrity and confidentiality of exchanged data.

 2. Provisioning Engine to Cloud-Edge Manager:

 Version 1.0 30 April 2024 Page 34 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 The use of SSL encryption to secure communication meets the security
 requirements for this connection. Additionally, authenticating cloud servers via
 OpenNebula, with a configuration similar to the serveradmin OpenNebula account,
 ensures the appropriate level of security and isolation needed in a multi-tenant
 environment.

 3. Device Client to Serverless Runtime:

 The combination of JWT and SSL for communication between the Device Client and
 the Serverless Runtime meets the security and authentication requirements. JWT
 encapsulates the necessary authentication mechanisms, thereby improving identity
 and access management for the device client. SSL encryption ensures the
 confidentiality and integrity of exchanged data.

 By analysing the available features and technologies, we were able to establish a list of
 potential solutions that meet these specific requirements. However, to select the optimal
 solution for integration into the COGNIT Framework, our next step will be to deepen our
 research through an in-depth state-of-the-art analysis. This approach will allow us to
 examine in detail the various IAM solutions available, evaluate their relevance and
 suitability to our usage context, and finally define the optimal solution for integration into
 the COGNIT Framework. This process will ensure the implementation of a robust and
 efficient IAM mechanism, thereby contributing to the success and security of the COGNIT
 project as a whole.

 Version 1.0 30 April 2024 Page 35 of 36

 SovereignEdge.Cognit–101092711 D3.2 COGNIT FaaS Model - Scientific Report - b

 [SR6.2] Confidential Computing

 In the last cycle, our team explored the possibilities offered by Confidential Computing
 technologies in the Edge Computing environment. We identified several promising
 avenues to enhance data security and confidentiality within the COGNIT Framework,
 particularly concerning OpenNebula as the baseline technology for the Cloud-Edge
 Manager component.

 We examined the benefits of Trusted Execution Environments (TEE) for creating secure
 execution environments, as well as the use of homomorphic encryption for securely
 processing sensitive data. Additionally, we investigated the compatibility and integration
 of these technologies with an Identity and Access Management (IAM) mechanism. We
 found it necessary to ensure that Confidential Computing features could be seamlessly
 integrated with the IAM solution to enhance security and confidentiality throughout the
 data lifecycle.

 We are analysing how Confidential Computing could be used to meet privacy requirements
 related to GDPR compliance. Confidential Computing can be used to meet privacy
 requirements and adhere to GDPR regulations. Confidential Computing can be used to
 process private data at the data controller's premises but also in external edge and cloud
 Platforms while providing high privacy guarantees. It guarantees privacy throughout
 processing by keeping data encrypted at rest (when stored) and also in use (while being
 processed). This is achieved through Trusted Execution Environments (TEEs) that are
 hardware-based secure enclaves in the processor. Data is only decrypted inside the
 hardware enclave to be processed. This prevents unauthorised access or modification of
 the data, even if the underlying system is compromised. Confidential Computing can
 provide cryptographic proof verifying the integrity of the processing environment.
 Authorised parties can access the results outside the TEE with the decryption key if
 needed.

 Confidential Computing can be used to show private data processing is compliant with
 GDPR. GDPR emphasises data minimization by collecting and processing only the minimal
 data necessary for a specific purpose. Confidential Computing can work with minimal
 anonymized or privacy-preserving data sets. Data collected under GDPR must be used only
 for specific purposes (purpose limitation). Confidential Computing limits opportunities for
 unauthorised usage beyond its intended purpose. GDPR requires that appropriate
 measures are taken to protect personal data. Confidential Computing provides extra
 security by processing the decrypted data only in the hardware TEE enclave.

 For the upcoming development cycles, we plan to conduct an in-depth state-of-the-art
 analysis of Confidential Computing technologies to integrate aspects of these solutions
 into OpenNebula and the COGNIT Framework. This approach will allow us to fully leverage
 the potential of confidentiality within the infrastructure, thereby ensuring an optimal level
 of security for applications deployed using the COGNIT Framework.

 Version 1.0 30 April 2024 Page 36 of 36

