
A Cognitive Serverless Framework for the Cloud-Edge Continuum

D3.1 COGNIT FaaS Model -
Scientific Report - a

Version 1.0

31 October 2023

Abstract

COGNIT is an AI-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
Continuum that enables the seamless, transparent, and trustworthy integration of data
processing resources from providers and on-premises data centers in the cloud-edge
continuum, and their automatic and intelligent adaptation to optimise where and how
data is processed according to application requirements, changes in application demands
and behaviour, and the operation of the infrastructure in terms of the main environmental
sustainability metrics. This document describes the research and development carried out
in WP3 “Distributed FaaS Model for Edge Application Development” during the First
Research & Innovation Cycle (M4-M9), providing details on the status of a number of key
components of the COGNIT Framework (i.e. Device Client, Serverless Runtime, and
Provisioning Engine) as well as reporting the work related to supporting the Secure and
Trusted Execution of Computing Environments.

Copyright © 2023 SovereignEdge.Cognit. All rights reserved.

This project is funded by the European Union’s Horizon Europe research and innovation
programme under Grant Agreement 101092711 – SovereignEdge.Cognit

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://cognit.sovereignedge.eu/

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Deliverable Metadata

Project Title: A Cognitive Serverless Framework for the Cloud-Edge Continuum
Project Acronym: SovereignEdge.Cognit
Call: HORIZON-CL4-2022-DATA-01-02
Grant Agreement: 101092711
WP number and Title: WP3. Distributed FaaS Model for Edge Application Development
Nature: R: Report
Dissemination Level: PU: Public
Version: 1.0
Contractual Date of Delivery: 30/09/2023
Actual Date of Delivery: 31/10/2023
Lead Author: Idoia de la Iglesia (Ikerlan)
Authors: Monowar Bhuyan (UMU), Malik Bouhou (CETIC), Aritz Brosa (Ikerlan), Sébastien

Dupont (CETIC), Torsten Hallmann (SUSE), Johan Kristiansson (RISE), Martxel Lasa
(Ikerlan), Marco Mancini (OpenNebula), Alberto P. Martí (OpenNebula), Philippe
Massonet (CETIC), Nikolaos Matskanis (CETIC), Daniel Olsson (RISE), Michał Opala
(OpenNebula), Goiuri Peralta (Ikerlan), Samuel Pérez (Ikerlan), Thomas Ohlson
Timoudas (RISE), Paul Townend (UMU), Iván Valdés (Ikerlan), Constantino Vázquez
(OpenNebula).

Status: Submitted

Document History

Version Issue Date Status1 Content and changes
0.1 20/10/2023 Draft Initial Draft
0.2 27/10/2023 Peer-Reviewed Reviewed Draft
1.0 31/10/2023 Submitted Final Version

Peer Review History

Version Peer Review Date Reviewed By
0.1 27/10/2023 Marco Mancini (OpenNebula)
0.1 27/10/2023 Paul Townend (UMU)

Summary of Changes from Previous Versions

First Version of Deliverable D3.1

1 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

Version 1.0 31 October 2023 Page 2 of 38

https://cordis.europa.eu/project/id/101092711

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Executive Summary

This is the first version of Deliverable D3.1, the COGNIT FaaS Model Scientific Report,
produced in WP3 “Distributed FaaS Model for Edge Application Development”. It describes
in detail the progress of the software requirements that have been active during the First
Research & Innovation Cycle (M4-M9) in connection with these main components of the
COGNIT Framework:

Device Client

● SR1.1 Interface with Provisioning Engine:

Implementation of the communication with the Provisioning Engine.

● SR1.2 Interface with Serverless Runtime:

Implementation of the communication of with the Serverless Runtime

● SR1.3 Programming languages:

Support for different programming languages.

Serverless Runtime

● SR2.1 Secure and Trusted FaaS Runtimes:

Automated building of secure and trusted images (vulnerability scans, security
assessment) related to different flavours of FaaS Runtimes.

Provisioning Engine

● SR3.1 Provisioning Interface for the Device to manage Serverless Runtimes:

Provide an interface to the Device asking for a Serverless Runtime to offload
functions and data transfer on any resource of the cloud-edge continuum.

Secure and Trusted Execution of Computing Environments

● SR6.1 Advanced Access Control:

Implement policy-based access control to support security policies on
geographic zones that define a security level for specific areas.

● SR6.2 Confidential Computing:

Enable privacy protection for the FaaS workloads at the hardware level
using Confidential Computing (CC) techniques.

This deliverable has been released at the end of the First Research & Innovation Cycle
(M9), and will be updated with incremental releases at the end of each research and
innovation cycle (i.e. M15, M21, M27, M33).

Version 1.0 31 October 2023 Page 3 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Table of Contents

Abbreviations and Acronyms 5

1. Device Client 6

[SR1.1] Interface with Provisioning Engine 6

[SR1.2] Interface with Serverless Runtime 10

[SR1.3] Programming languages 13

2. Serverless Runtime 17

[SR2.1] Secure and Trusted FaaS Runtimes 17

3. Provisioning Engine 21

[SR3.1] Provisioning Interface for the Device to manage Serverless Runtimes 21

4. Secure and Trusted Execution of Computing Environments 28

[SR6.1] Advanced Access Control 36

[SR6.2] Confidential Computing 37

Version 1.0 31 October 2023 Page 4 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Abbreviations and Acronyms

AI Artificial Intelligence

API Application Programming Interface

CC Confidential Computing

CD Continuous Delivery

DaaS Data as a Service

DB Database

FaaS Function as a Service

GPU Graphics Processing Unit

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management system

IOPS I/O Operations Per Second

IP Internet Protocol

IoT Internet of Things

JSON Javascript Object Notation

LDAP Lightweight Directory Access Protocol

ML Machine Learning

NIS Network and Information Security

OIDC OpenID Connect

OS Operating System

QoS Quality of Service

REST Representational State Transfer

RBAC Role-Based Access Control

S3 Simple Storage Service

SDK Software Development Kit

SEV Secure Encrypted Virtualization

SGX Software Guard eXtension

SLA Service Level Agreement

SQL Structured Query Language

TEE Trusted Execution Environments

TLS Transport Layer Security

VM Virtual Machine

YAML Yaml Ain’t a markup language

Version 1.0 31 October 2023 Page 5 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

1. Device Client

[SR1.1] Interface with Provisioning Engine

Description

The Device Runtime is the component that enables the devices to communicate with the
COGNIT platform to perform the offloading of tasks. This component communicates with
the Provisioning Engine to create/retrieve/delete/update a Serverless Runtime. It
communicates with the provided FaaS Runtime to perform the offloading of functions and
the uploading of content to the DaaS Runtime, if configured.

The Device Runtime will be delivered as a library with implementations in C and Python
which abstracts the user from the internal application protocol by offering a user-friendly
API.

The interface with the Provisioning Engine establishes communication with COGNIT
Framework, allowing the user’s device to access its permitted resources.

Architecture & Components

Figure 1.1. Schema of interaction of the Device Client with the Provisioning Engine.

The first step to establish connection with COGNIT Framework is to be able to
communicate with the Provisioning Engine, that will specify which Serverless Runtime is to
be used by the given Device Client, provided that the credentials of the device are valid to
be able to interact with the framework.

Version 1.0 31 October 2023 Page 6 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Figure 1.2. Block diagram of Device Runtime’s modules

The COGNIT library is split into several parts. On one side there is the public API of the
library, where the configuration for the communication with the COGNIT Framework
(Provisioning Engine in the first step) can be defined, and the Serverless Runtime context
(a valid session within COGNIT, having an assigned Serverless Runtime for function
offloading), that exposes the actions concerned from the user’s standpoint; such as:
call_sync (send offload task request), call_async (send offload task asynchronously
request), wait (wait until the async function execution in finished).

The private API defines three components: the Provisioning Engine client that implements
the API client to request and manage Serverless Runtime instances.
The Serverless Runtime Client, implements the API client to manage offloaded tasks that
are linked to a specific Serverless Runtime.

The FaaS serializer implements all the needed logic for the process of serialisation (format
correctly) of a given function that will be offloaded by the Serverless Runtime Client.

The public API is available to the user, and makes use of functionalities given by the private
API parts which are abstracted from the user for convenience, in order to provide all the
functionalities needed by a device using the COGNIT Framework.

Data Model

The data model of the interaction with the Provisioning Engine defines all the fields
expected by the Provisioning Engine for requests and responses.
The last attribute called Serverless Runtime is the type of object that encompasses the
rest of the attributes of the following table:

Version 1.0 31 October 2023 Page 7 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Attribute Description Fields Type

FaasState String describing the
state of the Serverless
Runtime.

PENDING = “PENDING”
RUNNING = “RUNNING”

Enum

FaaSConfig Object containing
information about the
requirements of the
Serverless Runtime (CPU,
MEM, …)

CPU: int (optional)
MEMORY: int (optional)
DISK_SIZE: str (optional)
FLAVOUR: str
ENDPOINT: str (optional)
STATE: FaaSState
VM_ID: str (optional)

Inherited from
pydantic’s
BaseModel

Scheduling String describing the
policy applied to
scheduling. Eg: “energy,
latency” will optimise the
placement according to
those two criteria.

POLICY: str
REQUIREMENTS: str

Inherited from
pydantic’s
BaseModel

DeviceInfo Information related to
the device where the
Serverless Runtime is
being hosted.

LATENCY_TO_PE: int
GEOGRAPHIC_LOCATION: str

Inherited from
pydantic’s
BaseModel

ServerlessR
untime

Definition of the
Serverless Runtime to
communicate to the PE.

NAME: str
ID: int
FAAS: FaaSConfig
DAAS: DaaSconfig (optional)
SCHEDULING: Scheduling
(optional)
DEVICE_INFO: DeviceInfo
(optional)

Inherited from
pydantic’s
BaseModel

Table 1.1. Data Model defining basic Serverless Runtime

API & Interfaces

The three methods, reported in the following table, allow the Device Client to request the
creation of a COGNIT context (the session with an associated Serverless Runtime within
the COGNIT infrastructure), to query the current status of a Serverless Runtime, or to
delete an existing Serverless Runtime context.

Description Method Parameters Return Type

Enables the developer
to establish a Serverless
Runtime context to be
used in the application
being run.

create
Valid CognitConfig
object.

StatusCode.

Version 1.0 31 October 2023 Page 8 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Get the current
Serverless Runtime
status (Property)

status - FaaSState

Delete the current
Serverless Runtime
context

delete
Delete the current
Serverless Runtime
context

Nothing

Table 1.2. API defining the Device Client’s interaction with the Provisioning Engine.

Version 1.0 31 October 2023 Page 9 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

[SR1.2] Interface with Serverless Runtime

Description

Once the first communication with the Provisioning Engine is finished (and established
connection to the COGNIT Framework), the interface with the Serverless Engine allows
the user to interact with the Serverless Runtime to which it has been assigned. Through
the defined API, the Device Client is able to manage offloaded tasks at the convenience of
the application that is being run in the device.

Architecture & Components

Figure 1.3. Block diagram of interaction between the Device Client and the Serverless Runtime.

The device is able to request execution of functions to be executed either synchronously
or asynchronously.

Data Model

The data structures defining the possible inputs and responses from and towards a given
SR, from the Device Client’s standpoint.

Attribute Description Fields Type

status_exec Execution status OK
WORKING
NOT_OK

Enum

Param Parameter
definition.

type: str
var_name: str
value: str # Coded b64
mode: str

Inherits from
pydantic BaseModel

ExecSyncParams Synchronously
executed function’s
details, comprising
language of
function, function

lang: str
fc: str
params: list[str]

Inherits from
pydantic BaseModel

Version 1.0 31 October 2023 Page 10 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

itself and its
parameters.

ExecAsyncParams Asynchronously
executed function’s
details, comprising
language of
function, function
itself and its
parameters.

lang: str
fc: str
params: list[str]

Inherits from
pydantic BaseModel

FaasUuidStatus State and result (if
any) of a given SR.

state: str
result: str (Optional)

Inherits from
pydantic BaseModel

ExecReturnCode Whether execution
was successful or
erroneous.

SUCCESS
ERROR

Inherits from
pydantic BaseModel

ExecResponse Response of a
generic execution,
with it’s return code,
result and error if
applicable.

ret_code:
ExecReturnCode

res: str (Optional)
err: str (Optional)

Inherits from
pydantic BaseModel

AsyncExecId Id of the FaaS where
the function is
executed.

faas_task_uuid: str Inherits from
pydantic BaseModel

AsyncExecStatus Whether a
asynchronously
executed function is
still in process or
already finished
(either successfully
or not)

WORKING
READY

Enum

AsyncExecResponse Defines
Asynchronous
execution status,
response (if any) and
the associated FaaS
where is being
executed.

status: AsyncExecStatus
res: ExecResponse

(Optional)
exec_id: AsyncExecId

Inherits from
pydantic BaseModel

Table 1.3. Data Model defining the Device Client’s interaction with the Serverless Runtime.

API & Interfaces

There are two ways of offloading a function from the Device Client’s standpoint:

Call_async allows the Device Client to execute it synchronously, passing the function
object as first parameter and a set of positional arguments following it, which will act as

Version 1.0 31 October 2023 Page 11 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

the function's arguments. Its Response will be an ExecResponse, which shows the return
code, result (if any), and error (if any), as shown in Table 1.3.

Call_async allows the Device Client executing a function asynchronously, with the same
structure as call_sync, but instead this call’s response will be an AsyncExecResponse, which
includes an ExecResponse as execution response, status which defines AsyncExecStatus
and exec_id which specifies the AsyncExecId, as shown in the table below:

Description Method Parameters Return Type

Perform the offload of
a function to the
COGNIT platform and
wait for the result

call_sync
func: Callable
args: Any [Bundled as
positional arguments]

ExecResponse.

Perform the offload of
a function to the
COGNIT platform
without blocking

call_async
func: Callable
args: Any [Bundled as
positional arguments]

AsyncExecResponse.

Wait for an
asynchronously
executed function to
finish to get its result (if
applicable)

wait
Id: AsyncExecId,
timeout: seconds to
wait for a response

AsyncExecResponse.

Table 1.4. API that defines the Device Client functions to perform actions within an assigned
Serverless Runtime.

Wait allows the Device Client waiting blocking the main program to finish (or timeout) a
previously call_sync-ed function.

Version 1.0 31 October 2023 Page 12 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

[SR1.3] Programming languages

Description

In this version only the Python version of the Device Client has been implemented
(representing interpreted languages), which will be extended with a C version for more
easily integrating COGNIT with constrained devices, in the M15 checkpoint of the project.

Architecture & Components

Architecture and components will be similar to the current (Python) version, although it
may suffer from small modifications due to language (C) constraints.

Specification

Class Description

CognitConfig
The global configuration to access the COGNIT platform
(Provisioning Engine IP and port, and needed credentials)
will be stored in an instance of this class.

ServerlessRuntimeContext
Represents the Serverless Runtime context and provides
runtime operations. This is a session with an assigned
Serverless Runtime for offloading functions.

ServerlessRuntimeRequirements Represents the requirements for the Serverless Runtime.

ServerlessRuntimeStatus
Represents the status of the Serverless Runtime. Possible
values: FAILED, READY, REQUESTED.

StatusCode
Represents the status code for an operation. Possible
values: ERROR, SUCCESS.

Method Description Arguments Return Type

configure

Enables the developer to configure
the endpoint and credentials to
connect to the COGNIT platform
instance. By default it will be
obtained from env vars

Endpoint: The COGNIT
platform endpoint that
will be used

None

The ServerlessRuntime Context provides the following functions to interact with the serverless
runtime:

Method Description Arguments Return Type

call_async
Perform the offload of a
function to the COGNIT platform
without blocking

func: Callable AsyncExecResponse

Version 1.0 31 October 2023 Page 13 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

args: Union[List[Any],
Tuple[Any, ...], Dict[str,
Any]]

call_sync
Perform the offload of a
function to the COGNIT platform
and wait for the result

func: Callable
args: Union[List[Any],
Tuple[Any, ...], Dict[str,
Any]]

ExecResponse

wait Wait for an
Id :AsyncExecId,
timeout: seconds to
wait for a response

AsyncExecResponse

copy Copies src into dst

src: A string containing
a local or remote path
of a file to be uploaded
to the Data Service,
dst: Target path of the
Serverless Runtime
where the file will be
copied

StatusCode

delete
Delete the current
ServerlessRuntime context

- -

status
Get the current Serverless
Runtime status (Property)

- ServerlessRuntime

Data Model

It will be similar to the current (Python) version, unless there are minimal tweaks required
by the language to be used (C in this case).

API & Interfaces

For consistency it will need to implement the same API endpoints with equally formatted
bodies.

Python SDK usage example

As specified in the GitHub README for the Device Client, there are several steps to be
followed in order to build the Python module (named as “cognit”). Once done with the
“Setting up COGNIT module” section, the user should be able to use it freely.

Showcasing the way to use the Python module (which implements all the methods above
mentioned in the SDK specification) is the minimal_offload_sync example under the
examples subfolder in the repository, which creates a request for a Serverless Runtime to
the corresponding Provisioning Engine (specified in the COGNIT config file, named
“cognit.yml”), checks its status, and once it is ready it requests the offload of a mock
function (simple sum in the example) to be executed in the Serverless Runtime assigned to

Version 1.0 31 October 2023 Page 14 of 38

https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/blob/main/README.md
https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/blob/main/README.md#setting-up-cognit-module
https://github.com/SovereignEdgeEU-COGNIT/device-runtime-py/blob/main/examples/minimal_offload_sync.py

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

this Serverless Runtime context (meaning the associated session created by the
Provisioning Engine):

import time

from cognit import (
EnergySchedulingPolicy,
FaaSState,
ServerlessRuntimeConfig,
ServerlessRuntimeContext,

)

Function to be offloaded in this example
def sum(a: int, b: int):

return a + b

Configure the Serverless Runtime requirements
sr_conf = ServerlessRuntimeConfig()
sr_conf.name = "Example Serverless Runtime"
sr_conf.scheduling_policies = [EnergySchedulingPolicy(50)]

Request the creation of the Serverless Runtime to the COGNIT Provisioning
Engine
try:

Set the COGNIT runtime instance based on “cognit.yml” config file (PE
address and port…)

my_cognit_runtime =
ServerlessRuntimeContext(config_path="./examples/cognit.yml")

Perform the request of generating and assigning an SR to this COGNIT
context.

ret = my_cognit_runtime.create(sr_conf)
except Exception as e:

print("Error: {}".format(e))
exit(1)

Wait until the runtime is ready
Checks the status of the request of creating the SR, and sleeps 1 sec. If
still not available.
while my_cognit_runtime.status != FaaSState.RUNNING:

time.sleep(1)

print("COGNIT runtime ready!")

Example offloading a function call to the Serverless Runtime
Call_sync will send to execute sync.ly to the already assigned SR. First
argument is the function and the following argos are the parameters to execute
it.
result = my_cognit_runtime.call_sync(sum, 2, 2) [*]

print("Offloaded function result", result)

Version 1.0 31 October 2023 Page 15 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

This sends a request to delete this COGNIT context.
my_cognit_runtime.delete()

print("COGNIT runtime deleted!")

[*] Currently, there is also the option to request the offload of the function async.ly:

Send request to offload dummy_func async.ly
status1 = test_ready_sr_ctx.call_async(dummy_func, 4,5,3)

Wait until status of the task changes from WORKING to READY
while status1.status == AsyncExecStatus.WORKING:

time.sleep(2)
Wait until the task is finished and the result is there (this blocks the

execution of the offloaded task, being the second argument (value 3) the timeout
of this blocking)
status2 = test_ready_sr_ctx.wait(status1.exec_id, 3)

Serverless Runtime context set up code (example using the Python SDK)

Version 1.0 31 October 2023 Page 16 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

2. Serverless Runtime

[SR2.1] Secure and Trusted FaaS Runtimes

Description

The Faas component of the Serverless Runtime is the environment in which functions to be
offloaded are executed within the COGNIT framework by the machine that provides the
Provisioning Engine.

Various runtime configurations are available for deployment to meet the specific
requirements of each function. These runtimes communicate with the Device Client,
offloading the designated function through a RESTful API. The system supports the
execution of functions written in both Python and C languages. However, the runtime’s
image must contain all the software requirements for the execution of the function.

The Serverless Runtime needs to implement an HTTPS server capable of handling the
communication with the Device Client and executing the designated function.

Architecture & Components

The Serverless Runtime provides a public Fast API REST Server that listens to FaaS and
Daas requests. Multiple components are involved in the execution of the task offloading
function:

1. FaaS Models: Provide the data structures needed for the requests and internal
communication between function calls.

2. FaaS Parser: It is responsible for serialising the offloaded functions and for
deserializing the results returned from the Serverless Runtime.

3. Logger: Provides its own log structure based on different levels of logging.
4. FaaS Manager: Responsible for adding an asynchronous task offloading and

managing its execution status.
5. Dask-based Event Loop: Provides parallel task execution and scalability of data

processing applications.
6. C Executor: Groups all the logic needed to execute C language with Cling, and

interactive C interpreter.
7. Py Executor: Groups the logic needed to execute Python language.

Version 1.0 31 October 2023 Page 17 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Figure 2.1. Block Diagram of Serverless runtime modules.

The FAST API REST Server is accessible to the user and makes use of the functionalities
given by the private API components, which are abstracted from the user for convenience.

Data Model

The task offloading is performed by sending a JSON object to the Serverless Runtime.
There are two main types of models, request and response, generated by the Serverless
Runtime. All POST request share the same fields:

{

"lang": “string”,

"fc": "string",

"params": [“string”, “string”, “string”]

}

Nevertheless, the body remains empty if the request is intended for checking the status of a
certain FaaS UUID.

There are different response bodies, depending on the request:
● Synchronous task offloading response:

{

"result": “string”

}

Version 1.0 31 October 2023 Page 18 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

● Asynchronous task offloading response:

{

"faas_uuid": “string”

}

● FaaS UUID status response when execution has finished:

{

"state": “string”,

"result": “string”

}

● FaaS UUID status response when execution is still executing:

{

"state": “string”

}

Attribute Description Value

lang String describing the programming
language of the code to be
offloaded

Base64 string.

fc String describing the function to be
offloaded coded in base64.

Base64 string.

params Array of strings describing the in/out
parameters of the function coded in
base64.

Array of base64 strings.

result String describing the result of the
function to be offloaded with the
parameters given.

String.

faas_uuid String describing the UUID of the
task to process asynchronously.

String.

state String describing the execution of
the function.

WORKING,
READY,
FAILED.

Table 2.1. Data model showing the data structures of the Serverless Runtime.

Version 1.0 31 October 2023 Page 19 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

API & Interfaces

This component has two types of calls, synchronous and asynchronous, thus, the
synchronous calls are evaluated, executed and then returned blocking the Serverless
Runtime’s thread.

On the other hand, we have asynchronous calls, in which the petition is evaluated and then
the execution takes place in another thread without blocking the Serverless Runtime’s
thread. This execution has an associated state, so polling is needed from the Device Client
to ensure that the execution has been successful, failed or working.

Action Verb Endpoint Request Body Response

Request a
sync
execution
of function

POST /v1/faas/execute-sync

JSON
representation of
the language of
execution, function
object and
parameters.

Status code 200
(Success) if the
execution was
successful. 400 (Bad
request) if the Request
body is not correctly
formatted. 405 (not
Allowed) if there is
another error with the
request.

Request an
async
execution
of function

POST /v1/faas/execute-async

JSON
representation of
the language of
execution, function
object and
parameters.

Status code 201
(Created) with the
faas-uuid object. 400
(Bad request) if the
Request body is not
correctly formatted. 405
(not Allowed) if there is
another error with the
request.

Get given
function
execution
status

GET
/v1/faas/{faas_uuid}/stat
us

JSON
representation of
the state of the
async. function,
result if applicable
and code of HTTP
request.

Status code 200
(Success) if the
execution was
successful. 400 (Bad
request) if the Request
body is not correctly
formatted. 404 (not
Found) if the specified
faas-uuid has not been
found.

Table 2.2. API that defines the way to interact with a given Serverless Runtime.

Version 1.0 31 October 2023 Page 20 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

3. Provisioning Engine

[SR3.1] Provisioning Interface for the Device to manage Serverless Runtimes

Description

The Provisioning Engine is a software component that acts as the single point of contact
for any Application Device Runtime that requests access to a Serverless Runtime,
comprised of a FaaS Runtime to offload computation through the FaaS paradigm, and/or a
DaaS Runtime to offload data into the cloud. Once this component receives a request for a
FaaS Runtime it communicates with the Cloud-Edge Manager, waits for the Serverless
Runtime to be available and returns the endpoints for the Device Runtime to communicate
with.

Two guides will be produced to install, configure and operate a Provisioning Engine. The
Administrator Guide will cover the installation of the component, including instructions to
install dependencies. It will also cover the configuration of the service, mostly by means of
the provisioning-engine.conf configuration file, to configure the server and also the
connection with the Cloud/Edge manager. Hints and best practices for the management of
the service will also be available for administrators in the guide. The User Guide will cover
the use of the Provision Engine by the Device Client. It will state all the needed
information that the Device Client must know, like the Provisioning Engine endpoint and
the Cloud/Edge manager credentials.

Architecture & Components

The Provisioning Engine is composed of four main modules, depicted in the High Level
Architecture contained in Figure 3.1:

Figure 3.1. Provisioning Engine High Level Architecture

Version 1.0 31 October 2023 Page 21 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

This component is stateless, it does not feature a database backend. Instead, it uses the
Document Pool of the Cloud/Edge Manager to save the different Serverless Runtime2

Description Object it received from the Device Client. A brief description of the different
modules follow:

● Rest API. This module is in charge of the communication between the Device Client
and the Provisioning Engine. It exposes a REST API specified in the API section.

● Translation Module. Converts the Serverless Runtime Description Object into VM
Templates that can be submitted to the Cloud/Edge Manager.

● Cloud/Edge Manager Client. Handles all communication between the Provisioning
Engine and the Cloud/Edge Manager to create and manage the lifecycle of the
Serverless Runtimes.

The Provisioning Engine runs as a service, exposing a REST interface. This service, as well
as other aspects of the behaviour of the whole component, can be configured using a
YAML file (provisioning-engine.conf) described in the following table:

Attribute Value

host IP to which the Provisioning Engine will bind to listen for incoming
requests.

port Port to which the Provisioning Engine will bind to listen for incoming
requests. Defaults to 2719.

one_xmlrpc OpenNebula daemon contact information

flavour_mapping Item list of tuples mapping the correspondence between Serverless
Runtime flavours to Cloud/Edge Manager OneFlow VM Templates.

- [nature-s3, 1]
- [phoenix-mariadb, 2]

Table 3.1. Provisioning Engine Server Configuration File

All authorization from the Device Client is delegated to the Cloud/Edge Manager, which
validates it against its internal DB or configured external authorization backends (such as
LDAP/AD, etc). This implies that Device Clients must have access to a user credential that is
valid in the Cloud/Edge Manager in order to interact with the Provisioning Engine.

Data Model

The first class citizen managed by the Provisioning Engine is the so-called Serverless
Runtime, which is a service running in a VM in the Cloud Edge manager, in charge of
processing the function offloading requests from the Device Client.

2 https://docs.opennebula.io/6.6/integration_and_development/system_interfaces/api.html#documents

Version 1.0 31 October 2023 Page 22 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Serverless Runtimes are described using a JSON object, specified below (each attribute of
the Serverless Runtime Description Object is explained in Table 3.2):

{

"$schema": "http://json-schema.org/draft-07/schema#",

"type": "object",

"properties": {

"SERVERLESS_RUNTIME": {

"type": "object",

"properties": {

"NAME": {

"type": "string"

},

“ID”: {

“type”: “integer”

},

“SERVICE_ID” : {

“type”: “integer”

},

"FAAS": {

"type": "object",

"properties": {

"CPU": {

"type": "integer"

},

"MEMORY": {

"type": "integer"

},

"DISK_SIZE": {

"type": "integer"

},

"FLAVOUR": {

"type": "string"

},

“ENDPOINT”: {

“type”: “string”

},

“STATE”: {

“type”: “string”

},

“VM_ID”: {

“type”: “string”

}

}

},

"DAAS": {

Version 1.0 31 October 2023 Page 23 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

"type": "object",

"properties": {

"CPU": {

"type": "integer"

},

"MEMORY": {

"type": "integer"

},

"DISK_SIZE": {

"type": "integer"

},

"FLAVOUR": {

"type": "string"

},

“ENDPOINT”: {

“type”: “string”

},

“STATE”: {

“type”: “string”

},

“VM_ID”: {

“type”: “string”

}

}

},

"SCHEDULING": {

"type": "object",

"properties": {

"POLICY": {

"type": "string"

},

"REQUIREMENTS": {

"type": "string"

}

}

},

"DEVICE_INFO": {

"type": "object",

"properties": {

"LATENCY_TO_PE": {

"type": "integer"

},

"GEOGRAPHIC_LOCATION": {

"type": "string"

}

Version 1.0 31 October 2023 Page 24 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

}

}

}

}

}

}

Attribute Value

SERVERLESS_RUNTIME JSON object describing the Serverless Runtime, comprised of a
mandatory FaaS and an optional DaaS

NAME Name of the Serverless Runtime. Optional in creation.

ID Integer describing a unique identifier for the Serverless Runtime.
Must be empty or nonexistent in creation.

SERVICE_ID Integer describing an internal identifier for the Cloud Edge
Manager. Must be empty or nonexistent in creation.

FAAS JSON object describing the Function as a Service Runtime

DAAS JSON object describing the Data as a Service Runtime

CPU Integer describing the number of CPUs allocated to the VM serving
the Runtime

MEMORY Integer describing the RAM in MB of CPUs allocated to the VM
serving the Runtime

DISK_SIZE Integer describing the size in MB of the disk allocated to the VM
serving the Runtime

FLAVOUR String describing the flavour of the Runtime. There is one identifier
per DaaS and FaaS corresponding to the different use cases.

ENDPOINT String containing the HTTP URL of the Runtime. Must be empty or
nonexistent in creation.

STATE String containing the state of the VM containing the Runtime. It can
be any state defined by the Cloud/Edge Manager , the relevant3

subset is “pending” and “running”. Must be empty or nonexistent in
creation.

VM_ID String containing the ID of the VM containing the Serverless
Runtime, running in the Cloud/Edge Manager. Must be empty or
nonexistent in creation.

SCHEDULING JSON object describing the scheduling policies and requirements

POLICY String describing the policy applied to scheduling. Eg: “energy,
latency” will optimise the placement according to those two criteria

3 https://docs.opennebula.io/6.6/management_and_operations/vm_management/vm_instances.html#virtual-machine-states

Version 1.0 31 October 2023 Page 25 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

REQUIREMENTS String describing the requirements of the placement. For instance,
“energy_renewal” will only consider hypervisors powered by
renewable energy.

DEVICE_INFO JSON object containing information about the client device
environment

LATENCY_TO_PE Integer describing in ms the latency from the client device to the
Provisioning Engine endpoint

GEOGRAPHIC_LOCATION String describing the geographic location of the client device in
WGS84 .4

Table 3.2. Explanation of Serverless Runtime Attributes

API & Interfaces

All the calls to this component are synchronous in the sense that they are evaluated in the
component and returned immediately, without an external dependency that may block the
call. Instead when a new resource is created, it has an associated state, a polling is needed
from the Client to ensure the resource is properly created or if there is a failure on
creation.

The API specified in the following table exposes methods to control the lifecycle of
Serverless Runtimes, the only object managed by a Provisioning Engine:

Action Verb Endpoint Request Body Response

Create
Serverless
Runtime

POST
/serverless-runt
imes

JSON
representation of
the
serverless-runtime
object

Status code 201 (Created) with
the created
dserverless-runtimeobject

Retrieve
Serverless
Runtime

GET
/serverless-runt
imes/{id}

-
Status code 200 (OK) with the
serverless-runtimeobject

Update
Serverless
Runtime

PUT
/serverless-runt
imes/{id}

JSON
representation of
the updated
serverless-runtime
object

Status code 200 (OK) with the
updated
serverless-runtimeobject

Delete
Serverless
Runtime

DELE
TE

/serverless-runt
imes/{id}

-
Status code 204 (No Content)
if successful

Table 3.3. Provisioning Engine API Specification

4 https://it.wikipedia.org/wiki/WGS84

Version 1.0 31 October 2023 Page 26 of 38

https://it.wikipedia.org/wiki/WGS84

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Serverless Runtime provisioning is a two calls operation:
1. First, the Device Client requests the creation to the Provisioning Engine sending

the Serverless Runtime Description Object.
2. Then, the Provisioning Engine, coupled with the AI-Enabled Orchestrator, creates

the VM (or VMs, which do not impact the flow of the creation calls) and returns the
Serverless Runtime Object filling the missing information (ID, STATE, ENDPOINT).

Afterwards, the Device Client polls regularly the Provisioning Engine until the STATE of the
desired Server states a running state. This workflow is depicted in the following sequence
diagram:

Figure 3.2. Serverless Runtime Provisioning Sequence Diagram

Version 1.0 31 October 2023 Page 27 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

4. Secure and Trusted Execution of Computing Environments

Threat Model
In order to support the risk analysis presented in D2.1, we performed a threat assessment
on the framework architecture. Modelling threats on the COGNIT framework aims to
identify, communicate, and understand threats and mitigations on COGNIT assets. The
threat model represents the information that affects the security of the framework,
providing a view of the system and its environment from the security point of view. In this
document, we follow the OWASP Threat Modeling methodology proposed by OWASP
ThreatDragon . We chose this tooling for its simplicity and high level approach , compared56 7

with other tools such as Microsoft TMT . The threat model is described in the following8

subsections:

● External Dependencies: components that are not part of the application's code
but could endanger it (external cloud storage, …)

● Access Points: interfaces that allow potential attackers to communicate with the
program

● Trust Levels: application's access privileges to external entities
● Data Flow Diagram: diagram showing the flows between actors, processes and

data stores, as well as the trust boundaries of the framework.

External Dependencies
External dependencies are components that are not part of the application's code but
could endanger it. The development teammay not have control over these things, but the
organisation usually still has influence over them. When looking at external dependencies,
the production environment and requirements should be taken into account first. External
dependencies are documented as follows:

1. ID: A unique ID assigned to the external dependency.
2. Description: A textual description of the external dependency.

ID Description

1 External sources : Data from external backend storages used by Device Clients application
and by the Serverless Runtimes (e.g. an S3 cloud storage)

2 Dedicated external user authentication : drivers used to leverage additional
authentication mechanisms or sources of information about the users (e.g. LDAP, OIDC).

Table 4.1. Threat model - External dependencies

8 https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

7 Bygdas, Erlend & Jaatun, Lars & Antonsen, Stian & Ringen, Anders & Eiring, Erlend. (2021). Evaluating Threat Modeling
Tools: Microsoft TMT versus OWASP Threat Dragon. 1-7. 10.1109/CyberSA52016.2021.9478215.

6 https://www.threatdragon.com

5 https://owasp.org/www-community/Threat_Modeling

Version 1.0 31 October 2023 Page 28 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Access Points

Access points specify the interfaces that allow potential attackers to communicate with or
provide data to the program. Access points are necessary for an application to be attacked
by a potential attacker. Access points are documented as follows:

1. ID: A unique ID assigned to the access point. This will be used to cross-reference
the access point with any threats or vulnerabilities that are identified.

2. Name: A descriptive name identifying the access point and its purpose.
3. Description: A textual description detailing the interaction or processing that

occurs at the access point.
4. Trust Levels: The level of access required at the access point. These will be

cross-referenced with the trust levels defined later in the document.

ID Name Description Trust Levels

1 Device Client

1.1 Public API Module used by users to communicate
with the COGNIT platform

(1) Device developer
(2) Device Client
software

1.1.1 Serverless Runtime
context

Represents the Serverless Runtime
context and provides runtime
operations.

(1) Device developer
(2) Device Client
software

1.1.2 COGNIT config
modules

Enables the developer to configure
the endpoint and credentials to
connect to the COGNIT platform
instance.

(1) Device developer
(2) Device Client
software

2 Provisioning Engine

2.1 REST API Exposes methods to Device Client to
control the lifecycle of Serverless
Runtimes, the only object managed by
a Provisioning Engine.

(3) Device Client user
(4) Provisioning Engine
administrator
(5) Provisioning Engine
software

3 Serverless Runtime

3.1 Public API Module used by users to communicate
with the Serverless Runtime

(3) Device Client user
(7) Serverless Runtime
user

3.1.1 FaaS resources
API/v1/FaaS

Actual environment where the
offloaded function will be executed,
and linked to it may exist a DaaS

(3) Device Client user
(7) Serverless Runtime
user

3.1.2 DaaS Resources
API/v1/DaaS

In charge of hosting any data that
might need to be stored for the

(3) Device Client user
(7) Serverless Runtime
user

Version 1.0 31 October 2023 Page 29 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

correct execution of the offloaded
function

4 Cloud-Edge Manager

4.1 Metrics REST API Allows the Cloud-Edge Manager to
receive metrics, related to the
performance, of the FaaS Runtime
(e.g. average execution time, number
of executions per second) and DaaS
Runtime (e.g. IOPS, available free
capacity) pushed by serverless
Runtime

(10) Monitoring agent
user

4.2 Serverless Runtime
deployment plan API

OpenNebula XML-RPC API and
OneFlow API, expose the
requirements via REST API to
AI-Enabled Orchestrator for
deployment plan.

(11) Monitoring
AI-Enabled Orchestrator
user

4.3 COGNIT
environment
authentication
system

Provides an authentication system
based on username and password or
using asymmetric cryptography
techniques such as TLS

(3) Device Client user
(6) Provisioning Engine
special user
(8) Cloud-Edge Manager
administrator

5 AI-Enabled Orchestrator

5.1 REST API REST API exposes to the cloud edge
manager, the method of placing the
Serverless Runtime on the available
cloud-edge continuum resources

Table 4.2. Threat model - Access points

Assets

Assets are documented in the threat model as follows:

1. ID: A unique ID is assigned to identify each asset. This will be used to
cross-reference the asset with any threats or vulnerabilities that are identified.

2. Name: A descriptive name that clearly identifies the asset.
3. Description: A textual description of what the asset is and why it needs to be

protected.
4. Trust Levels: The level of access required to access the access point is documented

here. These will be cross-referenced with the trust levels defined in the next step.

ID Name Description Trust Levels

1 Device Client

1.1 Private API Module encapsulating the internal (2) Device Client software

Version 1.0 31 October 2023 Page 30 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

logic to interact with the COGNIT
platform

1.1.1 Provisioning
Engine client

Module implementing the REST
client and the data models to
interact with the Provisioning Engine

(2) Device Client software

1.1.2 Serverless
Runtime client

Module implementing the REST
client and the data models to
interact with the Serverless Runtime

(2) Device Client software

1.1.3 FaaS serializer Module use to serialize the offloaded
functions into a string that can be
sent

(2) Device Client software

2 Provisioning Engine

2.1 Translation
module

Converts the Serverless Runtime
Description Object into VM
Templates that can be submitted to
the Cloud/Edge Manager.

(5) Provisioning Engine
software

2.2 Cloud/Edge
Manager client

Handles all communication between
the Provisioning Engine and the
Cloud-Edge Manager to create and
manage the lifecycle of the
Serverless Runtimes.

(5) Provisioning Engine
software

3 Serverless Runtime

3.1 Private API Module encapsulating the internal
logic for the execution of the task
offloading function

(8) Serverless Runtime
software

3.1.1 FaaS models Provide the data structures needed
for the requests and internal
communication between function
calls.

(8) Serverless Runtime
software

3.1.2 FaaS parser It is responsible for serialising the
offloaded functions and for
deserializing the results returned
from the Serverless Runtime.

(8) Serverless Runtime
software

3.1.3 Logger Provides its own log structure based
on different levels of logging.

(8) Serverless Runtime
software

3.1.4 FaaS manager Responsible for adding an
asynchronous task offloading and
managing its execution status.

(8) Serverless Runtime
software

Version 1.0 31 October 2023 Page 31 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

3.1.5 Dask-based event
loop

Provides parallel task execution and
scalability of data processing
applications.

(8) Serverless Runtime
software

3.1.6 C executor Groups all the logic needed to
execute C language with Cling, and
interactive C interpreter.

(8) Serverless Runtime
software

3.1.7 Py executor Groups the logic needed to execute
Python language.

(8) Serverless Runtime
software

4 Cloud-Edge Manager

4.1 Edge Cluster
provisioning

Based on OpenNebula OneProvision (9) Cloud-Edge Manager
administrator
(10) Cloud-Edge Manager
software

4.2 Serverless
Runtime
deployment

will be performed using VM and
OneFlow deployments in
OpenNebula

(6) Provisioning Engine
special user
(10) Cloud-Edge Manager
software

4.3 Metrics will be collected using Prometheus
Server and OpenNebula monitoring

(10) Cloud-Edge Manager
software
(11) Monitoring agent
user
(12) Monitoring
AI-Enabled orchestrator
user

4.4 Scheduler Will query the AI-Enabled
Orchestrator API to get placements
for the Serverless Runtimes

(10) Cloud-Edge Manager
software
(12) Monitoring
AI-Enabled Orchestrator
user

4.5 Provider
Catalogue

Contains a list of resource providers
available in the cloud-edge
continuum.

(6) Provisioning Engine
special user
(10) Cloud-Edge Manager
software

5 AI-Enabled Orchestrator

5.1 Orchestrator pod Placement recommendation, system
state recording, metrics DB

(14) Cloud-Edge Manager
software user
(12) Monitoring
AI-Enabled Orchestrator
user

5.2 AI plug-ins Backend AI service providing
placement (training, verification),
workload prediction, long-term
planning, energy usage prediction

(13) AI-Enabled
Orchestrator
administrator

Version 1.0 31 October 2023 Page 32 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

5.3 Orchestrator pod UI for the orchestrator and plugins (13) AI-Enabled
Orchestrator
administrator

Table 4.3. Threat model - Assets

Trust Levels
The application's access privileges to external entities are represented by the trust levels.
The assets and access points are cross-referenced with the trust levels. This enables us to
specify the privileges or access permissions needed to engage with each asset as well as
those needed at each access point. Trust levels are documented in the threat model as
follows:

1. ID: A unique number is assigned to each trust level. This is used to cross-reference
the trust level with the access points and assets.

2. Name: A descriptive name that allows you to identify the external entities that
have been granted this trust level.

3. Description: A textual description of the trust level detailing the external entity
who has been granted the trust level.

ID Name Description

1 Device administrator An administrator authentified to the Device and has logged in
using valid credentials and performs configuration.

2 Device Client software Software running on the client device with access to all
internal modules. Software is use case specific

3 Device Client user User authentified to the COGNIT environment using the
authentication system based on username and password
provided by the Cloud-Edge Manager (through Provisioning
Engine). This user can communicate with the Provisioning
Engine, Serverless runtime, and Cloud edge manager

4 Provisioning Engine
administrator

An administrator authentified to the Provisioning Engine and
has logged in using valid login credentials, he performs
configuration.

5 Provisioning Engine
software

Software running on the Provisioning Engine with access to
all internal modules.

6 Provisioning Engine
special user

User authentified to the Cloud-Edge Manager using security
mechanisms such as TLS 1.3 (certificate) and able to perform
deployment operations on the Cloud-Edge Manager

7 Serverless Runtime user User authentified on an external source

8 Serverless Runtime
software

Software running on the Serverless Runtime with access to all
internal modules.

9 Cloud-Edge Manager
administrator

An administrator authentified to the Cloud-Edge Manager
and has logged in using valid login credentials and perform
configuration.

Version 1.0 31 October 2023 Page 33 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

10 Cloud-Edge Manager
software

Software running on the Cloud-Edge Manager with access to
all internal modules.

11 Monitoring agent user User authentified to the Cloud-Edge Manager monitoring API
using to push collected metrics

12 Monitoring AI-Enabled
Orchestrator user

User authentified to the Cloud-Edge Manager monitoring API
using to pull collected metrics

13 AI-Enabled Orchestrator
administrator

An administrator authentified to the AI-Enabled Orchestrator
and has logged in using valid login credentials, he performs
configuration.

14 Cloud-Edge Manager
software user

User authentified to the AI-Enabled Orchestrator to get
placements for the Serverless Runtimes

Table 4.4. Threat model - Trust levels

Data Flow Diagram
The following figures were produced using the ThreatDragon tool and use the STRIDE
methodology. It illustrates a high-level threat model. It highlights the threats between the
different components and more particularly the Access Points described previously.

Figure 4.1. Threat model diagram

Figure 4.2 illustrates threat modelling more specific to the client device. The threats
identified concern modules communicating with actors external to the Device Client.

On the one hand the COGNIT configuration module, which could be spoofed in order to
allow an attacker to recover the credentials allowing access to a client device and thus
cause an information disclosure.

On the other hand the Provisioning Engine client and Serverless Runtime client module
which could be jammed in order to prevent them from communicating with the other
components of the framework, and thus cause a denial of service.

Version 1.0 31 October 2023 Page 34 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

Figure 4.2. Device Client Threat model diagram

Figure 4.3 illustrates threat modelling more specific to Serverless Runtime. The threats
identified concern the FastAPI Rest Server allowing the Device Client to communicate with
the Serverless Runtime, but also certain internal modules.

Requests sent to serverless Runtime API services (Daas & Faas) are subject to MITM
attacks.

On the other hand, executors allowing the execution of C and Python code are subject to
attacks of the "Memory inspection" (Information disclosure) in order to recover
information but also "Leverage Resource" by executing malicious code.

Figure 4.3. Serverless Runtime Threat model diagram

Figure 4.4 illustrates threat modelling more specific to the Provisioning Engine. The
threats identified concern the Rest API allowing the Device Client to communicate with

Version 1.0 31 October 2023 Page 35 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

the Provisioning engine. Requests sent to the Rest API are subject to MITM attacks. On the
other hand, these Rest APIs are subject to DDOS attacks, causing service unavailability.

Figure 4.4. Provisioning Engine Threat model diagram

[SR6.1] Advanced Access Control

Description

Based on the risk analysis in D2.2, and the threat model of the above section, we have
identified methods to exploit, detect and remediate overly permissive namespace access9

defaults in a multi-tenant context. The use of default namespaces makes application of
RBAC and other controls more difficult and is generally considered a vulnerability .101112

This default is insecure because inattentive users will not specify a namespace to deploy
their resources to, those will be deployed in the default namespace where a malicious
actor will more easily be able to find vulnerabilities and attack them.

Detection and mitigation

Detection of this vulnerability can be done using vulnerability scanning tools, those
implement checks for specific security properties. In this case, the security policy of the
COGNIT framework needs to specify that deployment of workloads to default namespaces
is not allowed, or alternatively that default namespaces should not be permitted at all .13

To that effect, we identified the OpenSCAP open source ecosystem that provides14

security policy enforcement through the Security Content Automation Protocol (SCAP).
The SCAP detection check interrogates the Cloud-Edge Manager API for the existence of a
default namespace, and triggers a security compliance error if that namespace is present,
notifying the platform administrators and security operators. The check should take place
at least each time the framework is instantiated, when the framework is updated, and
ideally on a schedule.

Once the vulnerability is detected, remediation can take place. The default namespace will
be deleted, and if it contains existing workloads those should be quarantined in a

14 https://www.open-scap.org

13 https://www.cisecurity.org/controls/v7 2.10 - Physically or Logically Segregate High Risk Applications - ensure the default
namespace/VDC does not exist

12 CWE-1188: Insecure Default Initialization of Resource

11 OpenNebula VOneCloud - Multi Tenancy - removing default VDC prevents accidental deployment in default VDC

10 CIS Kubernetes v1.24 Benchmark v1.0.0 L2 Master / Tenable 5.7.4 The default namespace should not be used

9 Namespaces are a mechanism to share and segregate resources in a multi-tenant context. Namespaces allow users to
attach authorization and policy to subsections of a cloud, separating them logically. OpenNebula’s Virtual Data Center (VDC),
OpenStack’s Neutron Network Namespaces, or Kubernetes Namespaces are examples of this mechanism.

Version 1.0 31 October 2023 Page 36 of 38

https://cwe.mitre.org/data/definitions/1188.html
https://forum.opennebula.io/t/vonecloud-multi-tenancy/11253/5
https://www.tenable.com/audits/items/CIS_Kubernetes_v1.24_v1.0.0_Level_2_Master.audit:8fb6ce931cbad5b9c4e99444b5b58fea

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

sandboxed environment for forensics analysis. This remediation is performed using the
Vacsine tool using OASIS CACAO remediation playbooks.15

In Figure 4.5, the Tenant A user deploys a workload (e.g. a virtual machine or a function)
without specifying the target namespace. The Cloud-Edge Manager has the following
insecure default configuration: when a workload has no target namespace, it is deployed
on the “default namespace”. This renders the workload vulnerable to malicious workloads
deployed in the default namespace, that can for example listen to the workload
communications or try to compromise it.

Figure 4.5. Side-channel attack on the Cloud-Edge Manager exploiting a insecure default

[SR6.2] Confidential Computing

Description

A "memory inspection" attack consists of recovering a secret stored in memory. Storing
and erasing these secrets is a difficult problem when facing an attacker who can gain
unrestricted physical access to the underlying hardware . This is particularly problematic16

in an edge context where the edge devices are easily accessible. Recent examples of this
kind of vulnerability include the Meltdown and Spectre attacks as well as the Heartbleed
(CVE-2014-0160) vulnerability.

Based on the risk analysis in D2.2, and the threat model of the above section, we have
identified methods to protect the framework against attacks that exploit those
vulnerabilities: the use of confidential computing techniques can mitigate this risk. A
secure CPU enclave is used to process sensitive data. The contents of the enclave,
including the data being processed and the methods used to handle it, are invisible to and

16 Jonathan Valamehr, Melissa Chase, Seny Kamara, Andrew Putnam, Dan Shumow, Vinod Vaikuntanathan, and Timothy
Sherwood. 2012. Inspection resistant memory: architectural support for security from physical examination. SIGARCH
Comput. Archit. News 40, 3 (June 2012), 130–141. https://doi.org/10.1145/2366231.2337174

15 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cacao

Version 1.0 31 October 2023 Page 37 of 38

SovereignEdge.Cognit–101092711 D3.1 COGNIT FaaS Model - Scientific Report - a

unknown to anyone outside of the permitted programming code. AMD SEV-SNP and Intel17

TDX are new hardware extensions developed to provide trusted execution.18

In order to validate the effectiveness of this security control at reducing the risk, memory
inspection tools can be used to try to extract digital artefacts from volatile memory (RAM).
Confidential computing will prevent an attacker from inspecting the memory in order to
extract confidential information. A concrete example in the COGNIT framework would be
the attacker trying to obtain authorization tokens for the provisioning engine by
inspecting an edge device memory.

18 https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html

17 https://www.amd.com/en/developer/sev.html

Version 1.0 31 October 2023 Page 38 of 38

