
A Cognitive Serverless Framework for the Cloud-Edge Continuum

D2.1 COGNIT Framework - Architecture - a
Version 1.0

28 April 2023

Abstract

COGNIT is an AI-enabled Adaptive Serverless Framework for the Cognitive Cloud-Edge
Continuum that enables the seamless, transparent, and trustworthy integration of data
processing resources from providers and on-premises data centers in the cloud-edge
continuum, and their automatic and intelligent adaptation to optimise where and how
data is processed according to application requirements, changes in application demands
and behaviour, and the operation of the infrastructure in terms of the main environmental
sustainability metrics. This document defines the main components of the COGNIT
Framework, identifies the main software requirements derived from the global and Use
Cases requirements, describes the methodology and specific scenarios that are being
employed for the verification of the innovative COGNIT functionalities, and provides an
initial plan for both the instantiation of the COGNIT Architecture and the prioritisation of
Software Requirements during the next research and innovation cycles of the Project.

Copyright © 2023 SovereignEdge.Cognit. All rights reserved.

This project is funded by the European Union’s Horizon Europe research and innovation
programme under Grant Agreement 101092711 – SovereignEdge.Cognit

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://cognit.sovereignedge.eu/


SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Deliverable Metadata

Project Title: A Cognitive Serverless Framework for the Cloud-Edge Continuum
Project Acronym: SovereignEdge.Cognit
Call: HORIZON-CL4-2022-DATA-01-02
Grant Agreement: 101092711
WP number and Title: WP2. Adaptive Cloud-Edge Serverless Framework Architecture
Nature: R: Report
Dissemination Level: PU: Public
Version: 1.0
Contractual Date of Delivery: 31/03/2023
Actual Date of Delivery: 28/04/2023
Lead Author: Marco Mancini (OpenNebula)
Authors: Michael Abdou (OpenNebula), Monowar Bhuyan (UMU), Dominik Bocheński

(Atende), Aritz Brosa (Ikerlan), Idoia de la Iglesia (Ikerlan), Sébastien Dupont
(CETIC), Grzegorz Gil (Atende), Torsten Hallmann (SUSE), Joan Iglesias (ACISA),
Tomasz Korniluk (Phoenix), Johan Kristiansson (RISE), Antonio Lalaguna (ACISA),
Martxel Lasa (Ikerlan), Ignacio M. Llorente (OpenNebula), Alberto P. Martí
(OpenNebula), Philippe Massonet (CETIC), Nikolaos Matskanis (CETIC), Behnam
Ojaghi (ACISA), Daniel Olsson (RISE), Holger Pfister (SUSE), Tomasz Piasecki
(Atende), Francesco Renzi (Nature4.0), Kaja Swat (Phoenix), Paul Townend (UMU),
Iván Valdés (Ikerlan), Thomas Ohlson Timoudas (RISE), Riccardo Valentini
(Nature4.0), Constantino Vázquez (OpenNebula), Shuai Zhu (RISE).

Status: Submitted

Document History

Version Issue Date Status1 Content and changes
0.1 14/04/2023 Draft Initial Draft
0.2 21/04/2023 Peer-Reviewed Reviewed Draft
1.0 28/04/2023 Submitted Final Version

Peer Review History

Version Peer Review Date Reviewed By
0.1 21/04/2023 Prof. Rubén S. Montero (OpenNebula/UCM)
0.1 21/04/2023 Mr Philippe Massonet (CETIC)

Summary of Changes from Previous Versions

First Version of the “COGNIT Framework - Architecture” Deliverable

1 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted, and Approved.

Version 1.0 28 April 2023 Page 2 of 61

https://cordis.europa.eu/project/id/101092711


SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Executive Summary

This is the first version of Deliverable D2.1, the COGNIT Framework Architecture report in
WP2 “Adaptive Cloud-Edge Serverless Framework Architecture”. It includes a summary of
Use Cases requirements (T2.1), an analysis of sovereignty, sustainability, interoperability,
and security requirements (T2.2), the design and architecture specifications of the COGNIT
Framework (T2.3, T2.4) and the methodology for verification (T2.5).

The project’s Use Cases, described in full detail in Deliverable D5.1, will drive the
development of the COGNIT Framework. The scientific and technological aspects of this
project will always be driven by the evolving requirements of its users. This report
describes the main components that will be considered to build an AI-Enabled Serverless
Cloud-Edge Computing Platform, identifying the main software requirements derived
from the analysis of the following Use Cases and their respective user requirements:

Smart Cities Wildfire Detection

Energy Cybersecurity

The main objectives of the COGNIT Framework are:

● Support a new innovative Serverless paradigm for edge application management,
based on code offloading.

● Enable the on-demand deployment of large-scale, highly distributed and
self-adaptive serverless environments using existing data processing resources
from cloud/edge infrastructure providers, including local data centres, cloud
providers, and 5G/telecom operators

● Optimise where data is processed according to changes in application demands and
behaviour, and energy efficiency heuristics.

Version 1.0 28 April 2023 Page 3 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

These are main components of the COGNIT Architecture:

● The Device Client allows the device to offload functions to any tier in the
cloud-edge continuum, according to some requirements provided by the device
itself; it will communicate with the Provisioning Engine in order to create Serverless
Runtime for the execution of device application tasks.

● The Serverless Runtime is in charge of executing the functions offloaded by the
devices and storing data uploaded by the devices or from external storage
backends.

● The Provisioning Engine is responsible for managing the lifecycle of the Serverless
Runtimes.

● The Cloud-Edge Manager is responsible for scheduling the Serverless Runtime
according to the deployment plan provided by the AI-Enabled Orchestrator

● The AI-Enabled Orchestrator is the component that, according to the device
requirements and infrastructure availability, will optimally schedule the Serverless
Runtime on the cloud-edge continuum resources.

Finally, this document also includes the description of the methodology and the specific
verification scenarios to be used for the validation of the project’s new features and their
applicability in each Use Case.

This analysis represents the starting point for Work Packages WP3 and WP4, which will
specify, design, and develop the components of the COGNIT Framework in order to satisfy
the list of global and user requirements defined in this document.

This deliverable has been released at the end of the start phase (M3), and will be updated
with incremental releases at the end of each research and innovation cycle (i.e. M9, M15,
M21, M27, M33).

Version 1.0 28 April 2023 Page 4 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Table of Contents

Abbreviations and Acronyms 6

1. Introduction 8

PART I. Global and User Requirements 9

2. Sovereignty, Sustainability, Interoperability, and Security Requirements 9

2.1. Sovereignty Requirements 9

2.2. Sustainability Requirements 10

2.3. Interoperability Requirements 10

2.4. Security Requirements 11

3. Use Case Requirements 13

PART II. Architecture Definition 16

4. COGNIT Framework 16

4.1. COGNIT Application Profile 16

4.2. COGNIT Execution Model 17

5. Distributed Serverless Model for Edge Application Development 21

5.1. Device Client 21

5.2. Serverless Runtime 23

5.3. Provisioning Engine 24

6. Cognitive Cloud-Edge Module 26

6.1. Cloud-Edge Manager 30

6.2. AI-Enabled Orchestrator 34

7. Secure and Trusted Execution of Computing Environments on the Multi-Provider Cloud-Edge
Continuum 38

7.1. Risk analysis 38

7.2. Advanced access control 40

7.3. Confidential computing 40

7.4. Federated Learning 41

8. Software Requirements 42

8.1. Device Client 42

8.2. Serverless Runtime 43

8.3. Provisioning Engine 44

8.4. Cloud-Edge Manager 44

8.5. AI-Enabled Orchestrator 45

8.6. Secure and Trusted Execution of Computing Environments 46

9. User to Software Requirements Matching 47

PART III. Verification and Implementation Plan 51

10. Software Build and Verification 51

10.1. Verification Methodology 51

10.2. Verification Scenarios 52

11. Instantiation of the COGNIT Architecture 57

12. Prioritisation of Software Requirements 59

13. Conclusions and Next Steps 61

Version 1.0 28 April 2023 Page 5 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Abbreviations and Acronyms

ACL Access Control List

AI Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Services

CC Confidential Computing

CCA Confidential Computing Architecture

CD Continuous Delivery (Deployment)

CI Continuous Integration

CIA Confidentiality, Integrity and Availability

CRA Cyber Resilient Act

DaaS Data as a Service

DB Database

FaaS Function as a Service

FLOPS FLoating point Operations Per Second

GPU Graphics Processing Unit

GDPR General Data Protection Regulation

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management system

IOPS I/O Operations Per Second

IP Internet Protocol

IoT Internet of Things

JSON Javascript Object Notation

LDAP Lightweight Directory Access Protocol

ML Machine Learning

NIS Network and Information Security

NIST National Institute of Standards and Technology

OIDC OpenID Connect

OS Operating System

QoS Quality of Service

REST Representational State Transfer

RBAC Role-Based Access Control

S3 Simple Storage Service

SDK Software Development Kit

SEV Secure Encrypted Virtualization

Version 1.0 28 April 2023 Page 6 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

SGX Software Guard eXtension

SLA Service Level Agreement

SQL Structured Query Language

TEE Trusted Execution Environments

TLS Transport Layer Security

TPM Trusted Platform Module

TPU Tensor Processing Unit

VM Virtual Machine

YAML Yaml Ain’t a markup language

Version 1.0 28 April 2023 Page 7 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

1. Introduction

The purpose of Deliverable D2.1 is to define the COGNIT AI-enabled serverless cloud-edge
computing platform for each of the three planned product innovation iterations. To this
end, D2.1 will be released at the beginning of each development cycle at M3, M9 and M15
with an incremental definition of Use Cases and requirements (T2.1), sovereignty,
sustainability, interoperability, and security requirements (T2.2), design and specifications
for distributed FaaS model for edge application development (T2.3) and cloud-edge
serverless framework (T2.4), and verification suite (T2.5). A final version of the report will
be released at the end of the last cycle at M21.

D2.1 is a living document that is composed of an introductory section and eleven
additional sections organised in three main blocks of content:

● Part I focuses on the definition of global requirements for the COGNIT Framework,
as well as on the user requirements extracted from the project’s Use Cases. Section
2 identifies the global sovereignty, sustainability, interoperability, and security
requirements, ensuring that the cloud-edge serverless architecture, its
deployment, and its exploitation are in line with European policies and priorities,
relevant EU projects, and open standards. Section 3, on the other hand, summarises
the main user requirements of the Use Cases, described in full in Deliverable 5.1.

● Part II focuses on the definition of the software requirements of the COGNIT
Framework. Section 4 defines the overall architecture of the COGNIT Framework,
consisting of two main parts: the Distributed Serverless Model for Edge Application
Development and the Cognitive Cloud-Edge Module, which are described in Section 5
and Section 6, respectively. Section 7 introduces and defines advanced mechanisms
and techniques to build a secure and trusted execution environment in the
cloud-edge continuum. Section 8 presents the functional gaps and requirements
grouped into the main building components of the COGNIT Framework. Section 9
provides the matching between software and user requirements.

● Part III focuses on verification and implementation. Section 10 presents the
verification methodology and a list of verification scenarios. Sections 11 identifies
an initial set of technologies to be used in the instantiation of the COGNIT
Architecture. Section 12 provides an initial prioritisation of Software Requirements
to be targeted during the next research and innovation cycles of the Project.

The document ends with a conclusion section.

Version 1.0 28 April 2023 Page 8 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

PART I. Global and User Requirements

2. Sovereignty, Sustainability, Interoperability, and Security
Requirements

This section summarises the results of an initial analysis of the European context in order
to ensure that, by meeting a number of relevant, transversal sovereignty, sustainability,
interoperability, and security requirements, the architecture of the COGNIT Framework is
in line with EU digital policies and strategic priorities related to the Cognitive Cloud. This
requirement analysis, which also incorporates sector-specific priorities from some of the
Project’s Use Cases, will be updated as part of each release of the Architecture report.

2.1. Sovereignty Requirements

Sovereignty, in the context of the development of a European cloud-edge continuum,
involves the consolidation of the leadership and strategic autonomy of the EU in the digital
world. The EU’s New Industrial Strategy, for instance, links that global objective with the
need to build solutions capable of leveraging the deployment of 5G and edge
infrastructures, as well as competitive European alternatives for the multi-cloud, following
an open source model.

It is also worth noting that the European Commission’s Open Source Software Strategy
2020-2023 also states that “open source impacts the digital autonomy of Europe. Against the
hyperscalers in the cloud, it is likely that open source can give Europe a chance to create and
maintain its own, independent digital approach and stay in control of its processes, its
information and its technology”. With all those priorities in mind, Table 3.1 below provides
the list of sovereignty requirements to be met during the execution of the project:

Id Description Source

SOR0.1 The COGNIT Framework shall be able to leverage
public, private, and self-hosted cloud and edge
infrastructures hosted in the European Union.

All

SOR0.2 The implementation of the COGNIT Architecture shall
maximise the use of European open source
technologies and frameworks.

All

SOR0.3 The COGNIT Framework shall provide an abstraction
layer that ensures workload portability seamlessly
across different infrastructure providers.

All

SOR0.4 Data handling by the COGNIT Framework shall be
compliant with the GDPR.

All

Table 2.1. Global Sovereignty Requirements.

Version 1.0 28 April 2023 Page 9 of 61

https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-industrial-strategy/depth-reviews-strategic-areas-europes-interests_en#cloud-and-edge-computing
https://ec.europa.eu/info/departments/informatics/open-source-software-strategy_en
https://ec.europa.eu/info/departments/informatics/open-source-software-strategy_en
https://gdpr.eu/


SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

2.2. Sustainability Requirements

These global requirements aim at reducing the ecological footprint of the COGNIT
Framework in line with the European Green Deal’s objective to create a climate neutral
continent and assuming that, in line with the Digital Decade objectives, our solution will
have to be able to leverage at some point the “10,000 climate neutral highly secure edge
nodes” that are expected to be deployed throughout the EU by 2023. Sustainability is the
focus of the Project’s Research Challenge 6—“Optimization of energy efficiency and
adaptation to variable (local) green energy supply throughout the cloud-edge continuum”;
this challenge will be studied in particular as part of the Energy Use Case (UC3), where the
COGNIT Framework will have to leverage AI/ML techniques to reduce energy usage in a
household, consequently reducing its energy footprint:

Id Description Source

SUR0.1 Sustainability performance needs to be measurable
(e.g. energy profiles should be queryable and
updatable for every feature/component within the
framework), including energy sources (e.g. renewable,
non-renewable) and energy consumption profiles (e.g.
estimated power consumption).

UC3

SUR0.2 Sustainability needs to be maximised to reduce
environmental footprint by leveraging edge
characteristics (e.g. by increasing the share of
renewables, minimising battery use/size, using energy
otherwise wasted, or scaling down active Runtimes).

UC3

SUR0.3 The whole energy lifecycle should be taken into
account in order to implement a circular economy,
including e.g. energy availability and cost and hardware
degradation.

All

Table 2.2. Global Sustainability Requirements.

2.3. Interoperability Requirements

The EU’s New Industrial Strategy also identifies the need to achieve a fairer and more
competitive business environment between business users and cloud providers, enhancing
access to fair, competitive, and trustworthy cloud solutions. Those objectives are also in
line with the technological priorities being defined as part of the updated EU industry
roadmap by the European Alliance for Industrial Data, Edge and Cloud. Interoperability is
also the focus of the Project’s Research Challenge 4—“Portable and adaptive execution of
serverless workloads across a multi-provider cloud-edge continuum”.

Version 1.0 28 April 2023 Page 10 of 61

https://climate.ec.europa.eu/eu-action/european-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/europes-digital-decade-digital-targets-2030_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-industrial-strategy/depth-reviews-strategic-areas-europes-interests_en#cloud-and-edge-computing
https://digital-strategy.ec.europa.eu/en/policies/cloud-alliance


SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

The following interoperability requirements target the ability of the COGNIT Framework
to connect and integrate with existing infrastructures, services, hardware. This means that
the framework should be aware and use existing frameworks, technologies and standards,
generic enough to be deployed on common infrastructures, and its usage instructions
should be properly documented:

Id Description Source

IR0.1 Deployment of the COGNIT Framework and of its
components should be as portable as possible across
heterogeneous infrastructures or cloud/edge service
providers (e.g. by using broadly-adopted virtualisation
and container technologies).

All

IR0.2 Preference should be given to expanding existing
frameworks, tools, and open standards.

All

IR0.3 The interfaces of the COGNIT Framework shall be
documented in order to facilitate discovery of its
features by third-parties.

All

Table 2.3. Global Interoperability Requirements.

2.4. Security Requirements

Security requirements cover the ability of the COGNIT Framework to protect data and
services at rest and in transit, in particular regarding confidentiality, integrity, and
availability (CIA). In line with the recommendations defined by the Cybersecurity Research
Directions for the EU’s Digital Strategic Autonomy, they follow these three dimensions:
protect the personal data from Internet giants, ensure resilience, and retain the ability to
make informed and independent decisions. The COGNIT Framework should implement a
security-by-design approach by adopting a number of good practices, including a
risk-based approach based on the NIST CyberSecurity framework that structures security
controls (identify, detect, protect, respond, recover), and a secure software lifecycle
management based on DevSecOps (see Section 10).

In addition, special care will be taken to adapt these high level security requirements to
make sure that they are aligned with the latest EU cybersecurity priorities, such as the
NIS2 Directive and the future CRA. Security is the focus of the Project’s Research
Challenge 7—”Secure and trusted execution of computing environments on multi-provider
cloud-edge continuum”; and will be expanded through the CyberSecurity Use Case by
incorporating advanced anomaly detection mechanisms, privacy respecting techniques,
and security remediation orchestration:

Version 1.0 28 April 2023 Page 11 of 61

https://www.enisa.europa.eu/publications/cybersecurity-research-directions-for-the-eu2019s-digital-strategic-autonomy
https://www.enisa.europa.eu/publications/cybersecurity-research-directions-for-the-eu2019s-digital-strategic-autonomy
https://digital-strategy.ec.europa.eu/en/policies/nis2-directive
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act


SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Id Description Source

SER0.1 Communications inside COGNIT, and between the
COGNIT environment and the outside (e.g. IoT devices)
should be encrypted and signed using security
mechanisms such as SSLv3.

All

SER0.2 The COGNIT Framework should be built following
security-by-design and Zeto Trust practices.

UC4

SER0.3 The implementation of the COGNIT Framework should
be aligned with the latest legislative frameworks, such
as the NIS2 Directive, the GDPR, and the future Cyber
Resilience Act (CRA).

All

SER0.4 Runtimes should be protected against threats by the
enforcement of security controls such as secure
defaults, vulnerability scans, intrusion and anomaly
detection and continuous security assessment (the
specific controls to be implemented will be determined
by a risk analysis).

All

SER0.5 Resources should be protected by an Identity and
Access Management (IAM) system, implementing role
based access control (RBAC), security zones, and
support for a multi-tenant security model.

All

SER0.6 Integrity of the offloaded functions needs to be
guaranteed, including the function inputs and outputs
(also during the live migration of FaaS Runtimes).

All

Table 2.4. Global Security Requirements.

Version 1.0 28 April 2023 Page 12 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

3. Use Case Requirements

This section summarises the user requirements extracted from the Use Cases, as described
in more detail in Deliverable D5.1:

Id Description Source

UR0.1 Device applications should be able to offload any
function written in C or Python languages.

All

UR0.2 Device applications should be able to upload data from
the device ensuring data locality with respect to where
the offloaded function is executed.

All

UR0.3 Device applications should be able to upload data from
external backend storages ensuring data locality with
respect to where the offloaded function is executed.

All

UR0.4 Execution of functions such as ML inference engines
should be able to load machine learning models stored
ensuring data locality with respect to where the
function is executed.

All

UR0.5 Function execution can be executed in different tiers of
the Cloud-Edge continuum according to network
latency requirements.

All

UR0.6 Device application shall have the ability to define
maximum execution time of the offloaded function
upon offloading.

All

UR0.7 Device application shall have the ability to specify and
enforce runtime maximum provisioning time and
runtime shall be provisioned within the previously
specified time.

All

UR0.8 Device applications must be able to request and obtain
an authorization prior to establishing any further
interaction with COGNIT.

All

Table 3.1. Common user requirements.

Version 1.0 28 April 2023 Page 13 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Id Description Source

UR1.1 Function execution shall be supported in shared,
multi-provider environments (with different access and
authorization procedures), and the execution must be
isolated from other processes on the host system.

UC1

UR1.2 Device application shall have the ability to dynamically
scale resources for offloading function execution to
maximise exploitation of resources in shared
environments, while avoid saturation or resources
kidnapping.

UC1

UR1.3 Function execution should exploit data locality and
prioritise edge nodes where the required data is
already stored.

UC1

UR1.4 The whole life cycle of either function execution or
code offloading should be auditable and non
repudiable.

UC1

UR1.5 Device applications should be able to request execution
over GPUs.

UC1

Table 3.2. User requirements for UC1 (Smart Cities).

Id Description Source

UR2.1 It shall be possible to obtain both a-priori estimates of
expected, and actual measurements of, energy
consumption of the execution of function.

UC2

UR2.2 COGNIT Framework should be able to adapt to rare
events with sudden peaks of FaaS requests, in which
the offloaded function requires much heavier
computations and more frequent execution than usual.

UC2

UR2.3 Possibility for devices to request access to GPUs, when
available, during high-alert mode.

UC2

Table 3.3. User requirements for UC2 (Wildfire Detection).

Version 1.0 28 April 2023 Page 14 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Id Description Source

UR3.1 Device Client and user applications shall share a
maximum of 500 kB of available RAM in total.

UC3

UR3.2 It shall be possible for the user application to
dynamically scale up/down resources for function
execution due to changes in the user preferences.

UC3

UR3.3 The SDK for the Device Client shall have support for the
C programming language.

UC3

Table 3.4. User requirements for UC3 (Energy).

Id Description Source

UR4.1 The Device Client should have the ability to dynamically
set the permissible edge nodes for executing the
function based on policy (e.g. geographic security
zones, distance to edge node).

UC4

UR4.2 The COGNIT Framework should have the ability to live
migrate of data/runtime to different edge locations
based on policy and location of function execution (e.g.
geographic security zones, distance to edge node).

UC4

UR4.3 The Device should be able to request the execution of a
function as close as possible (in terms of latency) to the
Device’s location.

UC4

Table 3.5. User requirements for UC4 (Cybersecurity).

Version 1.0 28 April 2023 Page 15 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

PART II. Architecture Definition

4. COGNIT Framework

COGNIT will develop a new distributed Serverless paradigm which will change how
applications are processed, both technically and conceptually, in the cloud-edge
continuum, and an innovative AI-enabled adaptive framework for the cognitive cloud-edge
continuum, which will provide applications with seamless, secure, and interoperable access
to a continuous computing and data processing service environment that abstracts the
large-scale, geo-distributed infrastructure provided by the cloud-edge continuum. The
framework will enable application developers to offload tasks with dynamic execution
requirements in terms of special hardware devices (e.g. GPUs), infrastructure capabilities
and capacities, specific execution environments, communication patterns, cost
performance, latency, security, and energy efficiency.

4.1. COGNIT Application Profile

COGNIT addresses emerging mobile and IoT edge device applications that need to
augment their capabilities for computationally intensive data processing, using fast
computational units, special-purpose resources and services (e.g. GPUs, HPC, DB), and
low-latency connections (i.e. 5G). Using code offloading allows computationally intensive
data processing to be executed outside the edge devices, sensors, and actuators; this
translates to more efficient power management, fewer storage requirements, and better
application performance where devices may not provide the hardware acceleration
capabilities for increasing the performance of the critical regions of computations.

Although code offloading has been widely considered to save energy and increase
responsiveness of mobile devices, the technique still faces many challenges pertaining to
practical usage, namely the complexity of its integration with the cloud management
environment, the dynamic configuration of the system, its scalability, and the lack of
Offloading-as-a-Service implementations. COGNIT addresses existing code offloading
limitations by developing a new distributed Serverless model that, integrated with a
Cognitive cloud-edge management platform, facilitates the development of elastic and
scalable edge-based applications.

In order to provide end-users with seamless access to a continuous data processing
environment, COGNIT allows application developers to easily integrate cloud-edge
processing in their coding logic by using a new distributed Serverless computing model
that allows them to offload data processing code fragments and tasks from the end-user
system, device, sensor, or actuator to the cognitive continuum in order to speed up
computation, save energy, save bandwidth, or provide low latency.

Serverless computing is a cloud computing execution model in which the cloud provider
allocates machine resources on demand, taking care of the servers on behalf of their
customers. It has been rapidly adopted by developers because it relieves them of the
burden of provisioning, scaling, and operating the underlying infrastructure. Different
FaaS services (AWS Lambda, Azure Functions, Google Cloud Functions), and open source
frameworks (Apache OpenWhisk, Iron Functions, Fission, Kubeless, OpenFaaS) are

Version 1.0 28 April 2023 Page 16 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

available in the market, but they they assume that the cloud platform runs on large, highly
homogeneous datacenters with commodity infrastructure, and the functions have a small
footprint and short execution duration.

Table 4.1 summarises the main differences between the COGNIT model and the traditional
Serverless/FaaS model implemented by existing cloud offerings and technologies:

Serverless/FaaS
Cloud Model

COGNIT Serverless
Cloud-Edge Model

PROGRAMMING

Programming model Interconnected functions
(code) defined at a Cloud

provider

Single program source code on
device that follows an
asynchronous model

Where the function runs On Cloud provider On cloud-edge location

When the function runs On event, cloud event-driven On demand, application
logic-driven

Application profile Low footprint Compute-intensive data
processing

Program state Stateless Stateless / Stateful

Maximum runtime Short (e.g. <900 seconds) None

Maximum capacity Limited (e.g. < 3GiB memory) None

Communication patterns Workflows and state machines Results forwarding to other
functions

Deployment
requirements

Basic capacity (e.g. memory) &
quotas

Performance, cost, security, and
energy

OPERATION

Scaling Cloud provider responsible Cloud provider responsible

Deployment Cloud provider responsible Cloud provider responsible

Fault Tolerance Cloud provider responsible Cloud provider responsible

INFRASTRUCTURE

Infrastructure Single centralised cloud Dynamic distributed cloud/edge

Location Single centralised cloud Developer selects (cloud-edge
continuum)

Special-purpose devices None Hardware (GPU), services (AI)

Table 4.1. COGNIT Serverless Cloud-Edge Model vs traditional Serverless/FaaS Cloud Model.

4.2. COGNIT Execution Model

The execution model introduced in this section describes the workflow that COGNIT will
follow in order to meet the requirements of being able to deliver part of the application
computation and workload in the cloud-edge continuum.

The COGNIT Framework is based on the architecture described in Figure 4.1:

Version 1.0 28 April 2023 Page 17 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Figure 4.1. General view of the COGNIT Architecture.

The COGNIT Framework expands traditional serverless and FaaS solutions, where
resources are hired just from a single cloud provider, considering infrastructure resources
along the cloud-edge continuum, i.e. on-premise deployments, public cloud providers,
edge providers. COGNIT provides a Serverless paradigm that allows applications and IoT
devices to perform computations on any resource along the cloud-edge continuum hiding
the unnecessary infrastructure management of a highly distributed and heterogeneous
environment.

The architecture of the COGNIT Framework consists of five components as depicted in
Figure 4.1. The first group of components is related to the Distributed Serverless Model
for Edge Application Development that consists of the following:

● Device Client: SDK that allows to create Serverless runtime environments for
offloading function executions on the cloud-edge continuum and then perform
different tasks such as function execution, transfer data from external sources and
upload data from the device itself.

● Serverless Runtime: main unit management component of the COGNIT
Framework that allows the execution of device/application functions, upload and
transfer data in a hardened and secure environment.

Version 1.0 28 April 2023 Page 18 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

● Provisioning Engine: responsible for managing the lifecycle of the Serverless
Runtimes; it can create, delete and update the Serverless Runtimes according to
the operations that are sent by the Device.

The final two architectural components are grouped together as part of the Cognitive
Cloud-Edge Module that allows the management of the cloud-edge continuum resources
in an intelligent and adaptive way

● Cloud-Edge Manager: responsible for managing the highly distributed and
heterogeneous resources of the cloud-edge continuum in order to schedule
Serverless Runtimes according to the device/applications requirements.

● AI-Enabled Orchestrator: in charge of producing an initial deployment plan
according to the device requirements. It will update the deployment plan in case of
updated requirements sent by the device, but it will also dynamically optimise the
Serverless Runtime placement, taking into account the monitoring of the resources
(e.g. VMs, networks, etc.) used by the Serverless Runtime and the application
metrics (e.g. application workload) sent by the Serverless Runtime.

Figure 4.2. COGNIT components sequence diagram.

Version 1.0 28 April 2023 Page 19 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

In Figure 4.2 a sequence diagram is reported to show the communications between the
different components. Different phases can be identified in the diagram:

1) The device will request a Serverless Runtime to the Provisioning Engine that
satisfies some requirements (e.g. CPU/memory needs, storage, latency, etc.).

2) The Provisioning Engine will communicate with the Cloud-Edge Manager, which
according to the device initial requirements will deploy the Serverless Runtime.

3) The device polls the Provisioning Engine until the Serverless Runtime is created and
ready.

4) Once the Serverless Runtime is ready, the device can start its operations such as
offloading execution of tasks and functions and data upload/transfer.

5) The device can send updated requirements to the Provisioning Engine according to
dynamical changes in the edge application.

6) The device can ask to delete the Serverless Runtime once the application does not
need anymore to offload tasks to the cloud-edge infrastructure.

The next sections describe in detail the different components of the COGNIT Framework.

Version 1.0 28 April 2023 Page 20 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

5. Distributed Serverless Model for Edge Application
Development

In this Section we detail the model for an application running on the Cloud-Edge
continuum using a distributed Serverless model. The main components are

● Device Client
● Serverless Runtime
● Provisioning Engine

5.1. Device Client

The Device Client establishes a communication with the Provisioning Engine to request
offloading of certain operations, such as running a function or data transfer to be
executed on Serverless Runtime(s) on the distributed cloud-edge continuum. The client
will be able to set certain requirements, such as latency, cost or energy consumption, to let
the COGNIT Framework decide how and where to run the offloaded task:

Category Requirement

Execution Context Capacity (i.e. CPU, Memory, Disk)

Network features

Specific processing infrastructure (e.g. Cloud, HPC)

Special Devices (e.g. GPU, TPM)

Runtime Flavour Application-specific OS (e.g. openSUSE)

Libraries and packages needed for function execution (e.g.
PyTorch)

Data service type (e.g. MinIO, MariaDB)

Communication Patterns Parallel processing

Map-Reduce

Deployment Performance and Cost

Security

Latency

Energy Consumption

Table 5.1. Device Requirements.

Version 1.0 28 April 2023 Page 21 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

The device that is hosting the Device Client will need to be able to implement a HTTP
client, as the requests will be forwarded in the form of an HTTP API.

The Device Client will have multilingual support, starting by covering Python and C as main
languages, for enabling the Use Cases presented in this project, but opened to expand to
other languages in the future if it is required. Clearly the considerations to offload tasks
differ remarkably if the targeted language is an interpreted or a compiled one, so being
the two starting languages a good example of each kind of language, they can be
considered as standards for future expansions.

The libraries needed for the offloaded code to be executed in the correct location need to
be properly preprocessed, so the code execution is flawless at the right time, therefore
the client will need to handle this preprocessing.

The client will also be able to define if the offload is done in a synchronous way or
asynchronous, and if the latter is the case, a polling mechanism will tell the client when the
offloaded task is finished within the COGNIT Framework.

Moreover, a caching mechanism will be implemented in the COGNIT Framework, so the
different functions can be registered for a more streamlined execution of recurrently
occurring offload of tasks’ situation.

The communication between the Device Client and the COGNIT Framework will be
encrypted, and an authorisation mechanism based on certificates will be put in place, in
such a way that authenticated and confidentiality preserving exchange will assure a secure
entry point towards the COGNIT system from the device.

The Device Client will be implemented as an SDK according to the language supported by
the device (either Python or C) and will provide the following methods:

Operation Definition

Create

Allows the device to Initiate a session for offloading functions and data
transfer. It returns to the device the context information of the
Serverless Runtime created by the Provisioning Engine, according to the
requirements passed as a parameter through the initial operation.

Read Allows the device to read the context of the Serverless Runtime.

Upload Allows the device to upload data to the Serverless Runtime.

Copy
Allows the data transfer from an external storage (e.g. an S3 cloud
storage) to the Serverless Runtime.

Execute Allows the device to offload computations on the Serverless Runtime.

Update Allows the device to update the requirements of the Serverless Runtime.

Delete
Allows the device to terminate the session by asking the Provisioning
Engine to delete the Serverless Runtime.

Table 5.2.Methods supported by the Device Client SDK.

Version 1.0 28 April 2023 Page 22 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

As an example of the Device Client SDK, a Python-like code is reported in Table 5.3
corresponding to the Energy Use Case of charging a vehicle:

import cognit

requirements = { ‘CPU’: ‘2’, MEM: ‘4GB’, HW_constraints: ‘GPU’ }

def inference(smart_meter_data, weather_data, model_file):

model.load(model_file)

model.evaluate()

return model.inference(weather_data, smart_meter_data)

ctx = cognit.create(requirements)

ctx.copy('http://path/to/bucket/weather_prediction.csv',faas:'/data/wea
ther_prediction.csv')

ctx.copy('http://path/to/bucket/model.torch', faas:'/data/model.torch')

charge_complete = False

while not charge_complete:

smart_meter_data = device.get_data()

prediction = ctx.FunctionEvaluate(inference, smart_meter_data,
'/data/weather_prediction.csv', '/data/model.torch')

charge_complete = device.check_charge(prediction)

sleep(10)

ctx.delete()

Table 5.3. Example of a Python-like code for the Device Client.

5.2. Serverless Runtime

Serverless Runtime is the main management unit of the COGNIT Framework. It is defined
by a document (e.g. YAML file) that conveys all the information for its automatic
deployment on the distributed cloud-edge continuum. The document containing the
requirements for the Runtime is sent by using the Device Client to the Provisioning Engine.

The Serverless Runtime consists of two main components:

● A Function as a Service (FaaS) Runtime component that allows the execution of
functions on resources of the cloud-edge continuum.

● A Data as a Service (DaaS) component that allows uploading data to the Serverless
Runtime exploiting data locality. The DaaS can implement different protocols and
backend storages (e.g. S3, SQL DB, etc.).

Version 1.0 28 April 2023 Page 23 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

The Serverless Runtime is created and scheduled according to the requirements provided
by the device that can be related to different constraints, as reported in Table 5.1. The
Serverless Runtime provides different operations that are exposed through a REST API:

Operation Definition

Execute Allows the execution of a function.

Upload Uploads data from the device into the Serverless Runtime.

Copy Copies data from external data sources into the Serverless Runtime.

Table 5.4.Methods supported by the Serverless Runtime REST API.

The Serverless Runtime will push metrics, related to the performance, of the FaaS Runtime
(e.g. average execution time, number of executions per second) and DaaS Runtime (e.g.
IOPS, available free capacity) to the Cloud-Edge Manager so that it can be pulled and taken
into account by the AI-Enabled Orchestrator.

5.3. Provisioning Engine

The Provisioning Engine is responsible for managing the lifecycle of the Serverless
Runtimes, and will provide the following operations:

Operation Definition

Create
Creates a new Serverless Runtime according to the initial requirements
sent by the device.

Read Reads the context of the Serverless Runtime.

Delete Deletes the Serverless Runtime

Update Updates the requirements of the Serverless Runtime

Table 5.5.Operations supported by the Provisioning Engine.

The Provisioning Engine exposes a REST API that is used by the Device Client to manage
(create/read/delete/update) Serverless Runtimes.

The Provisioning Engine, once receives a request from the device, translates the
requirements (see Table 5.1) sent by the device into a new document (e.g. a YAML or JSON
file) divided in two main parts as reported in Table 5.6. and then it sends this document to
the Cloud-Edge Manager:

Category Requirement

Infrastructure Template Number of CPUs/cores and FLOPS

Version 1.0 28 April 2023 Page 24 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Memory Size and Bandwidth

Storage size and IOPS (for the DaaS)

Network bandwidth and latency

Hardware Specifics (e.g. GPU, TPM)

Energy constraint

Security constraints

Cost constraints

Serverless Template One VM/container image ID (related to a VM appliance
marketplace or a container registry) of the FaaS Runtime -
containing specific OS and libraries for executing functions
sent by the device.

One or more VM/container images ID(s) (related to VM
appliance marketplace or a container registry) of the DaaS
Runtimes - containing applications for storing data such as a
database or an object storage.

Table 5.6. Serverless Runtime Requirements.

The creation request of a new Serverless Runtime will be an asynchronous process, so the
Device client will not be blocked during the request; the Provisioning Engine will return a
unique Serverless Runtime ID (received from the Cognitive Cloud-Edge Module) that the
Device client can use to poll the Provisioning Engine (at intervals that are set by the device
itself) in order to know the status of the request. Once the request is completed, the
Device can perform a read using the Serverless Runtime ID to get the information of the
Serverless Runtime, such as the IP to connect, that can then be used to perform execution
of functions or data operations.

The Provisioning Engine will establish secure communication channels both with the
Device and with the Cognitive Cloud-Edge Module, and will provide a mechanism to
authenticate the Device (see Section 6.1 for more details).

Version 1.0 28 April 2023 Page 25 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

6. Cognitive Cloud-Edge Module

The Cognitive Cloud-Edge Module, in line with the Project’s Research Challenge
4—“Portable and adaptive execution of serverless workloads across a multi-provider
cloud-edge continuum” and Research Challenge 5—“Automatic and intelligent adaptation of
the cloud-edge continuum to the changing demands of the applications”—will decide about
the placement and mobility of Serverless Runtimes across the cloud-edge continuum and
about the elasticity measures to be applied to the cloud-edge infrastructure, all that in
order to respond to the application requirements sent by the edge devices and the need
to proactively optimise placements, costs, and other utility functions (e.g. energy
consumption) according to the dynamic changes in the conditions and requirements of the
application or to those unexpected incidents affecting the underlying infrastructure.

Figure 6.1.Workload and cloud-edge infrastructure adaptability supported by COGNIT.

The following table describes in more detail how the COGNIT Framework will deal with the
adaptability required for the automatic placement and mobility of the Serverless Runtimes
and for leveraging in an intelligent and optimal way the elasticity capabilities that the
infrastructure across the cloud-edge continuum provides:

Version 1.0 28 April 2023 Page 26 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Feature Description Activation

(A)Optimal
Serverless
Runtime
Placement

Instantiate a Serverless
Runtime on an Edge
Cluster able to meet its
current requirements.

✔ Reactive: the edge application
triggers the instantiation or update
of a Serverless Runtime with a
specific set of characteristics.

(B) Serverless
Runtime Vertical
Elasticity

Scale up/down the
resources associated
with the workloads (e.g.
VMs) hosting the
Serverless Runtime.

✔ Reactive: due to event-driven
elasticity rules or changes in the
Serverless Runtime requirements
according to new specifications by
the edge application.

✔ Proactive: due to AI-driven
forecasting techniques.

(C) Serverless
Runtime Mobility

Live migrate the
Serverless Runtime to a
different Edge Cluster.

✔ Reactive: due to event-driven
mobility rules or changes in the
Serverless Runtime requirements
according to new specifications by
the edge application.

✔ Proactive: due to AI-driven
forecasting techniques.

(D)Optimal
Global Workload
Placement

Optimise the placement
of existing Serverless
Runtimes.

✔ Proactive: due to AI-driven
optimisation techniques (e.g. reduce
overall energy consumption).

(E) Infrastructure
Cluster Elasticity

Scale up/down existing
Edge Clusters by
activating/deactivating
hosts (i.e. servers).

✔ Reactive: due to event-driven
elasticity rules or changes in the
Serverless Runtime requirements
according to new specifications by
the edge application.

✔ Proactive: due to AI-driven
forecasting techniques.

(F) Infrastructure
Horizontal
Elasticity

Increase the number of
available Edge Clusters
in a given location.

✔ Reactive: due to event-driven
elasticity rules or changes in the
Serverless Runtime requirements
according to new specifications by
the edge application.

✔ Proactive: due to AI-driven
forecasting techniques.

(G) Additional
Cloud/Edge
Provider

Increase the number of
available cloud/edge
service providers
offering infrastructure
resources.

✔ Reactive: due to event-driven
provisioning rules or changes in the
Serverless Runtime requirements
according to new specifications by
the edge application.

Version 1.0 28 April 2023 Page 27 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

(H) Additional
Cloud/Edge
Locations

Incorporate new
geographical locations
to the cloud-edge
continuum.

✔ Reactive: due to event-driven
provisioning rules or changes in the
Serverless Runtime requirements
according to new specifications by
the edge application.

Table 6.1. COGNIT reactive and proactive adaptability features.

In order to respond to those adaptability requirements, the Cognitive Cloud-Edge Module
(as shown below in Figure 6.2) will be based on two main components:

● The Cloud-Edge Manager is in charge of managing the cloud-edge continuum
infrastructure and of performing actions to manage the lifecycle of the different
Serverless Runtimes, collecting their metrics and monitoring the infrastructure
resources used by the Serverless Runtimes.

● The AI-Enabled Orchestrator is responsible for optimising the placement of the
Serverless Runtime using data-driven approaches based on the metrics collected by
the Cloud-Edge-Manager. It checks periodically the status of the Serverless
Runtimes created by the Provisioning Engine. It interacts appropriately with the
Cloud-Edge Manager in order to schedule Serverless Runtimes on the cloud-edge
continuum according to the device requirements. Then it will update the Serverless
Runtime placement, according to the dynamic changes in the application
requirements and to changes in the infrastructure, client device mobility, etc.

Figure 6.2. High-level AI/ML orchestration model.

As shown in Figure 6.2, the AI-Enabled Orchestrator obtains monitored metrics from the
Cloud-Edge manager through ametrics collector and these metrics will be utilised to train

Version 1.0 28 April 2023 Page 28 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

AI/ML models for smart placement and relocation of workloads across a distributed
cloud-edge continuum based on a diverse and wide range of workloads. Each layer is
explained below:

Device client/applications. As discussed in Section 5, each client interacts with the
Serverless Runtime for running a function or data transfer across the distributed
cloud-edge. Workloads will be classified based on unique features of resource usage
patterns as short-living, long-living, compute-intense, data-intense ormemory-intensive.
Furthermore, each workload may be classified based on multi-dimensional requirements of
resources (e.g. CPU, disk, network, memory) and Quality of Service (QoS) requirements
(e.g. time constraints, throughput, latency). The extremely dynamic and unpredictable
feature of heterogeneous workloads greatly increases the complexity of orchestration
mechanisms.

Edge Cluster. An Edge Cluster is a semi-autonomous complete environment with a
dedicated software-defined resource set (compute, network and storage). The AI-Enabled
orchestrator is responsible for assigning Serverless Runtimes to nodes where runtimes are
actually hosted and executed. The major functionalities involve:

● Resource Allocation assigns a specific amount of resources to each runtime. Such
configurations and limitations are basic metrics in managing Serverless Runtime
placement and resource isolation control between runtimes.

● Scheduling defines the policy for the initial placement for one or a group of Serverless
Runtimes, by considering conditions such as resource constraints, communication
costs, QoS requirements, and SLAs.

● Scaling is the resource configuration adjustment of Serverless Runtimes or compute
nodes in response to any potential workload fluctuations.

● Migration is designed as a complementary mechanism to prevent severe
infrastructure-level resource overloading or resource contention between co-located
serverless runtimes by relocating one or a group of runtimes from one node to
another.

● Load Distribution plans to distribute the network traffic among runtimes evenly with a
policy like RoundRobin. It will improve system scalability, availability, and network
performance.

AI/ML Enabler. The AI/ML enabler will build ML models for workload characterization,
performance analysis, and adaptive deployment of Serverless Runtimes across the
cloud-edge continuum based on analysis of monitoring data and system logs received from
the Orchestrator. Furthermore, it will make future resource provisioning decisions based
on the generated behavioural models and prediction results. AI/ML enablers can be
entirely integrated or independent from the Orchestrator or adhere to the Orchestrator.
The major components are:

● Workload Modeler is designed for ML-based workload characterization through
analysing FaaS workloads and identifying their key characteristics.

Version 1.0 28 April 2023 Page 29 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

● Performance Verifier generates application and system behaviour models through
applying ML algorithms to application and infrastructure-level monitoring data
acquired from the Orchestrator.

● Predictor forms forecasts of workload volumes or application/system behaviours,
relying on the models obtained fromWorkload Modeler and Performance Verifier. The
prediction results can be sent either to the Orchestrator or Inference engine.

● Inference engine combines the behaviour models and prediction results received from
the above components with multiobjective optimization methods/schemes to further
generate precise resource provisioning decisions that are fed back to the Orchestrator.
The multiobjective optimization will take processed input from the metrics (Edge
Clusters, FaaS, DaaS) to prioritise learning features that enable fine-grained models as
well as inference after.

6.1. Cloud-Edge Manager

The main responsibilities of the Cloud-Edge Manager are:

● Exposing through an API the operations for managing the cloud-edge continuum
infrastructure (i.e. physical computational hosts, networks and storages across
multi-cloud providers and edge locations) and managing the Serverless Runtimes,
that are used by the AI-Enabled orchestrator to optimise the execution of the
applications based on the requirements sent by the device.

● Monitoring both the cloud-edge infrastructure and the Serverless Runtimes to
provide the AI-Enabled Orchestrator with information to implement automatic and
intelligent adaptation for the placement of the Serverless Runtimes .

● Providing authentication and authorization mechanisms for accessing and securing
resources such as physical hosts, virtual machines, networks, services, etc.

Cloud-Edge Manager provisions resources across the cloud-edge continuum and offers a
simplified, efficient way to deploy Serverless Runtimes (as virtualized workloads -
VMs/micro-VMs/containers), according to the device/application requirements. The
Cloud-Edge Manager is responsible for coordinating the use of a set of highly
heterogeneous and distributed locations, providing an uniform view of the underlying
resources, in such a way that the Serverless Runtimes can be deployed anywhere in the
cloud-edge infrastructure without performing any additional configuration or setup.

Provider Catalogue

The Cloud-Edge Manager maintains a catalogue that contains a list of resource providers
available in the cloud-edge continuum. The catalogue allows the AI-Enabled Orchestrator
to select which providers/ locations are better suited according to the device requirements
(in terms of cost, capacity, energy, latency, bandwidth, etc).

Each provider has an entry in the catalogue with:

● Unique ID
● List of locations, each location with a list of instance types
● Each instance type has

○ Name

Version 1.0 28 April 2023 Page 30 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

○ Capacity
○ Price per hour
○ Price per megabyte (outbound and inbound)
○ Energy consumption per hour

● Link to the Provider Driver (custom adapter that uses the provider API)
● Additional characteristics:

○ Public IPs
○ GPUs
○ Backend storage types

The Provider Catalogue will contain entries related to public, private cloud or self hosted
infrastructures hosted in the European Union. A set of filters (i.e. for latency, cost, energy,
specific characteristics) are available to the AI-Enabled Orchestrator to select the
appropriate provider according to the requirements provided by the device.

Edge Cluster Management

The main management unit of the Cloud-Edge Manager where to provision Serverless
Runtime is the Edge Cluster. An Edge Cluster is a semi-autonomous complete
environment with a dedicated software-defined resource set (compute, network and
storage) able to work on unreliable infrastructures. Given the heterogeneity of cloud-edge
systems, the Edge Cluster creates an abstraction layer enabling interoperability across the
multi-provider cloud-edge infrastructure. Edge Clusters can be provisioned anywhere in
the cloud-edge (on-premises, on public cloud and edge providers), but we assume that
each Edge Cluster is defined only for a specific provider of the cloud-edge - a provider can
be a public cloud provider, an edge local provider, a set of far edge devices, etc.

The Cloud-Edge Manager exposes an API that provides the following operations to the
AI-Enabled Orchestrator for the management of Edge Clusters:

Operation Definition

Create
Creates a new Edge Cluster on one of the locations available in the
Catalogue.

Delete Deletes an Edge Cluster

List Lists existing Edge Clusters and return details for each of them

Configure Configures services on the Edge Cluster’s hosts.

Scale
Scales up/down the size of an existing Edge Cluster (i.e. add or remove
hosts)

Table 6.2. Edge Cluster management operations provided by the Cloud-Edge Manager.

The provision of a new Edge Cluster is controlled by a document (i.e. a YAML or a JSON
file) that describes in a declarative way the resources of the Edge Cluster associated with a
specific provider (among the ones available in the Provider Catalog). Every time a new

Version 1.0 28 April 2023 Page 31 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Edge Cluster is created a unique id is associated with it. This document is created by the
AI-Enabled Orchestrator according to the specifications related to the Infrastructure
section as described in Table 5.6.

The Cloud-Edge Manager according to the document specifications will use a Provider
Driver (a custom adapter for the provider API) that will automatically create the necessary
resources for the Edge Cluster and will configure the different created entities (physical
hosts, networks and storage) to provide software-defined components:

● Hypervisors for the deployment of workloads (i.e. Serverless Runtime) as VMs,
microVMs or containers.

● Software-defined storage for storing the Serverless Runtimes images and for
providing data blocks to the DaaS (e.g. DBs, object storage, …)

● Software-defined networks (i.e. virtual/overlay networks) for providing the
communication of the Serverless Runtimes within the Edge Cluster and for the
communication with the public Internet (i.e. the edge devices)

The provision document provided by the AI-Enabled Orchestrator contains the following
information:

● Provider ID
● Resource specifications related to physical hosts, networks and storages
● Setup and configuration of the software-defined components:

○ Hosts configuration with components such as the hypervisor technology
(VMs, microVMs, containers)

○ Datastores
○ Overlay networks

Serverless Runtime Management

The Cloud-Edge Manager exposes an API that allows the following operations related to
the deployment of Serverless Runtime on Edge Clusters:

Operation Definition

Create Creates a new Serverless Runtime on an Edge Cluster identified by its ID.

Check
Checks the status of the Serverless Runtime (i.e. PENDING, DEPLOYING,
RUNNING, SCALING, …)

Update
Update the Serverless Runtime deployment (e.g.. scheduling on another
Edge Cluster)

Scale
Scales the FaaS/DaaS components of the Serverless Runtime (e.g.
increase number of CPUs)

Delete Deletes a Serverless Runtime

Table 6.3.Methods for Serverless Runtime management provided by the Cloud-Edge Manager.

Version 1.0 28 April 2023 Page 32 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

The deployment of a new Serverless Runtime is controlled by a document (e.g. a YAML or
JSON file) that contains the Serverless Runtime Template (i.e. the FaaS and DaaS runtime
specs - image, resource requested, number of replicas, etc.). The Provisioning Engine will
use the Serverless Runtime Template to issue the creation of a new Serverless Runtime
that will be set to a PENDING state. The AI-Enabled Orchestrator will place the Serverless
Runtime according to the requirements set in the Infrastructure Template (see Table 5.6).

Monitoring, Scaling, and Migration

The Serverless Runtime placement can be updated by the AI-Enabled Orchestrator
according to the metrics that are collected by the Cloud-Edge Manager. The metrics are
related to both the Edge Clusters (i.e. hosts, network, storage, software-defined
components) and the Serverless Runtimes (application-defined metrics, e.g. average
execution time of a function, DB IOPS, etc.). According to the information collected, the
AI-Enabled Orchestrator can interact with the Cloud-Edge Manager to update the
placement of the Serverless Runtime according to the following scenarios:

● Scaling up/down the Edge Cluster resources.
● Scaling up/down the Serverless Runtime.
● Migrating the Serverless Runtime from one host to another, or even from one Edge

Cluster to another.

Also, the Cloud-Edge Manager should provide mechanisms in order to ensure a secure and
trusted environment for the Serverless Runtimes, such as intrusion and anomaly detection.
More details about secure and trusted execution is reported in Section 9.

As a requirement for the first research phases of the Project (until M15), we assume that a
set of Edge Clusters are predefined, configured and provisioned according to the Use Case
requirements (see Section 3). The Edge Clusters for the first phase are described in
Deliverable D5.1, Section 8 (“Summary of Use Case Cloud-Edge Infrastructure”). Once the
Edge Clusters are provisioned, the AI-Enabled orchestrator is responsible only with the
scheduling/deployment, dynamic replacement and scaling of the Serverless Runtime
across the different Edge Clusters available. In subsequents iterations of the project, this
constraint will be relaxed and Edge Cluster provision configurations could be dynamically
changed by the AI-enabled Orchestrator according to the dynamic changes in the
requirements of the application.

Authentication and Authorization

The Cloud-Edge Manager provides an authentication system based on username and
password, where information and secrets are stored in the Cloud-Edge Manager itself.
Dedicated external user authentication drivers can be used to leverage additional
authentication mechanisms or sources of information about the users (e.g. LDAP, OIDC).
Users can belong to groups that are authorization boundaries for the users.

The Cloud-Edge manager provides an ACL authorization system that enables fine-tuning of
the allowed operations for any user, or group of users. Each operation generates an
authorization request that is checked against the registered set of ACL rules. The

Version 1.0 28 April 2023 Page 33 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Cloud-Edge Manager then can grant permission, or reject the request. This allows the
system to tailor the user roles according to their cloud-edge infrastructure needs.

Each user entity can represent single or multiple devices that need to use cloud-edge
resources to offload workloads. The devices are authenticated by the Provisioning Engine
through a special mechanism as described in the following.

The Cloud-Edge Manager provides a mechanism to delegate the authentication process to
the Provisioning Engine, that can use this to authenticate the requests from the devices
and then forward the requested operations (e.g. create a Serverless Runtime) to the
Cloud-Edge Manager. When a device interacts with the Provisioning Engine, it
authenticates the request through the Cloud-Edge Manager (this step requires a user
registered in the Cloud-Edge Manager associated with the device) and then it forwards the
requested operation to the Cloud-Edge Manager. The forwarded requests between the
Provisioning Engine and the Cloud-Edge Manager include the original user identifier, and
are signed with the credentials of a special user.

The Provisioning Engine communicates with the Cloud-Edge Manager using a special user.
This special user uses an authorization mechanism that allows the Provisioning Engine to
perform an operation (i.e. creating a Serverless Runtime) on behalf of another user. In
order to strengthen the security of the requests between the Provisioning Engine and the
Cloud-Edge Manager, certificate-based authentication can be used. This provides mutual
authentication using asymmetric cryptography techniques such as TLS.

Advanced mechanisms for authorization are described in Section 7.2.

6.2. AI-Enabled Orchestrator

The AI-Enabled Orchestrator is responsible for the placement of the Serverless runtime
using AI/ML approaches according to the requirements specified by the devices.

The AI-Enabled Orchestrator periodically checks the status of the Serverless Runtimes that
are issued by the Provisioning Engine and considering the device requirements, it will
proceed to optimally place the Serverless Runtime following two phases.

● In the first phase, the AI-Enabled Orchestrator, according to the information
related to the infrastructure category (see Table 5.6) selects the Provider and
checks if an Edge Cluster with enough resources is already provisioned on it.
Otherwise, it issues the creation of new Edge Clusters by providing the Cloud-Edge
Manager with a provision document related to the Provider selected and with
information to match the device requirements.

● In the second phase, the AI-Enabled Orchestrator updates the schedule of the
Serverless Runtime on the Edge Cluster previously selected by invoking the
corresponding method provided by the Cloud-Edge Manager.

The AI-Enabled Orchestrator is a proactive component that will dynamically optimise
Serverless Runtime placement, taking into account changes in requirements sent by
devices, the monitoring of resources (e.g. VM/microVM/container, storage, networks, etc.)
used by the Serverless Runtime, and application metrics sent by the Serverless Runtime.

Version 1.0 28 April 2023 Page 34 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

The AI-Enabled Orchestrator will utilise these metrics for building learning models (e.g.
self-supervised learning, contrastive learning) that adapt to changes in Serverless Runtime
requests from devices and changes in resources for smart placement across the
distributed cloud-edge continuum. Furthermore, the orchestrator will optimise
deployment of Serverless Runtimes using multiobjective optimization (e.g. NSGA-III)
techniques.

Each time the AI-Enabled Orchestrator produces a new and smart deployment plan, it can
issue an action for the Cloud-Edge Manager to reschedule the Serverless Runtime on
different resources in the cloud-edge continuum.

The AI-Enabled Orchestrator monitors the states of the Serverless Runtime to keep it in a
healthy state (through appropriate probes) and interacts with the Cloud-Edge Manager to
get information about its state; based on this, it will interact with the Cloud-Edge Manager
to take actions to bring it to a healthy state (e.g. through reboot or rescheduling).

AI/ML Methods

With increasingly diverse and dynamic cloud workloads processed by existing cloud service
providers, it is still unclear how to automate the orchestration process for complex
heterogeneous workloads under large-scale cloud computing systems. An important
consideration is that serverless computing allows developers to write highly scalable,
event-driven applications as a set of short-lived functions; this results in an idle cost (from
a user perspective) of zero. In COGNIT, Serverless Runtimes will be orchestrated across
distributed cloud-edge continuum using AI/ML methods to ensure efficient and automated
workload orchestration - this has been highly successful in multiple applications such as
image recognition, self-driving cars, recommendation systems, chatbots, etc.2

These successes are possible due to having large datasets combined with continuous
improvement of computational power such as GPUs and TPUs. Machine learning (ML)
algorithms are classified as supervised, unsupervised and reinforcement learning.
Supervised learning refers to constructing models given a collection of training instances x1,
x2, …. xk and the corresponding response variable y, whereas in unsupervised learning there
exist only predictors, hence the algorithms have to learn the structure of the training data.

Reinforcement learning solutions learn through trial-and-error, i.e. an agent learns to
perform actions in an environment by interacting with it and receiving feedback regarding
the performed actions. In contrast with many forms of machine learning, the learner is not
told which actions to take, but instead, must discover which actions yield the most reward
by trying them out (unsupervised learning). The goal of the agent is to maximise its
cumulative reward, also referred to as expected return. Different reinforcement learning
methods yield distinct behaviours for the agent to achieve their goal. Such solutions have
drawn attention to automating and optimising workload placement across distributed
cloud-edge continuum for serverless runtimes. However, when the goal is to predict a
continuous or quantitative output value, the corresponding problem to be solved is called

2 Tahseen Khan, Wenhong Tian, Guangyao Zhou, Shashikant Ilager, Mingming Gong, Rajkumar Buyya, “Machine learning
(ML)-centric resource management in cloud computing: A review and future directions”, Journal of Network and Computer
Applications, Volume 204, 2022, ISSN 1084-8045: https://doi.org/10.1016/j.jnca.2022.103405

Version 1.0 28 April 2023 Page 35 of 61

https://doi.org/10.1016/j.jnca.2022.103405


SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

regression, whereas the prediction of a categorical or qualitative output is known as a
classification problem.

Figure 6.3. Typical steps in MAPE-k frommonitoring to execution.

Machine learning methods can be parametric, where certain assumptions are made about
the functional form of the model and training data is then used to fit its parameters, e.g.
as in polynomial regression, or non-parametric, e.g. neural networks. Machine learning can
also be used for inference tasks, i.e. to understand how the response variable is affected
when the predictors change. A typical MAPE-k loop is given in Figure 6.3, which is primarily
used to develop and deploy a learning model in computer systems for resource
provisioning. It comprises seven steps: start from track to adapt, what is needed to
accomplish a task.

Monitoring, Training, and Deployment

The development of a machine learning model is a complex and iterative process. A typical
ML workflow or pipeline is given below in Figure 6.4. This workflow comprises four key
elements 1) data management, 2) model learning, 3) model verification and 4) model
deployment. The Data managementmodule will collect and pre-process the data to make
it ready for model training.Model trainingwill learn the feature representation of data and
optimise until a model suitable for a task is obtained.Model verification essentially
investigates the performance of the model. Finallymodel deployment aims to deploy the
trained and fine-tuned model for accomplishing certain tasks and to later update,
maintain, and integrate again.

Version 1.0 28 April 2023 Page 36 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Figure 6.4. Generic ML workflow.

Version 1.0 28 April 2023 Page 37 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

7. Secure and Trusted Execution of Computing Environments on
the Multi-Provider Cloud-Edge Continuum

The Multi-Provider Cloud-Edge Continuum presents an increased attack surface, increasing
the security risk. Visibility and control of the edge devices and nodes, for example, is not
always guaranteed, and may be difficult to achieve, especially in highly distributed and
heterogeneous edge cloud environments. In order to secure and provide a level of trust in
COGNIT, we will research state-of-the art security mechanisms, i.e. advanced access control
based on policies and attributes, trusted/confidential techniques, and the application of
Federated Learning.

7.1. Risk analysis

The main risks on the COGNIT Architecture components are summarised in the table
below. For each COGNIT component the main threats are identified, and their risk is given
in terms of severity and likelihood:

Components Threats Severity /
Likelihood

Device Client
(DC)

● Threat on the runtime software causing
unavailability: misconfiguration of the DC API
service

High/Medium

● Threat on the runtime software causing
tampering: unauthorised access to inject
vulnerability (ex. backdoor)

Medium/Medium

● Threat on the runtime software causing data leak:
insecure communications (ex. man-in-the-middle)

Medium/Medium

● Threat on the runtime hardware causing
unavailability: exhaustion of edge device
compute/memory/network resources (ex. denial
of service attack), physical access for memory or
disk inspection

High/Medium

● Threat on the runtime software causing data loss:
ransomware

Medium/Medium

● Threat on the wireless network causing
unavailability: loss of connectivity, evil twin

High/Medium

Serverless
Runtime (SR)

● Threat on the SR software causing unavailability:
misconfiguration of the functions, data loss
during live migrations

High/Medium

Version 1.0 28 April 2023 Page 38 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

● Threat on the SR software causing a data leak:
Inadequate monitoring and alerting

Medium/Medium

● Threat on the SR software causing tampering:
over privileged access to resources for the
functions

Medium/Medium

● Threat on the SR hardware causing unavailability:
exhaustion of edge node
compute/memory/network resources (ex. denial
of service attack)

High/Medium

Provisioning
Engine (PE)

● Threat on the PE software causing causing
unavailability: misconfiguration of the APIs to the
devices and the Cloud/Edge

High/Low

● Threat on the PE software causing a data leak:
over privileged access for devices to runtimes
(Read)

Medium/Low

● Threat on the PE software causing tampering:
over privileged access for devices to runtimes
(Create, Update, Delete)

Medium/Low

● Threat on the PE hardware causing causing
unavailability: exhaustion of provisioning engine
compute/memory/network resources (ex. denial
of service attack)

High/Low

Cloud-Edge
Manager
(CEM)

● Threat on the CEM software causing
unavailability: misconfiguration of the CEM APIs

High/Low

● Threat on the CEM software causing a data leak:
misconfigured access for users to cloud/edge
resources

Medium/Low

● Threat on the CEM software causing tampering:
insecure secret management

Medium/Low

● Threat on the CEM hardware causing
unavailability: vulnerabilities in the underlying
infrastructure (ex. SPECTRE)

High/Low

AI-Enabled
Orchestrator
(AIO)

● Threat on the AIO software causing causing
unavailability: misconfigured orchestration
workflows

High/Low

● Threat on the AIO software causing a data leak:
misconfiguration of access to AIO API, insecure
orchestration workflows

Medium/Low

Version 1.0 28 April 2023 Page 39 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

● Threat on the AIO software causing tampering:
training data poisoning for the orchestration ML
algorithms

Medium/Low

● Threat on the AIO hardware causing causing
unavailability: vulnerabilities in the underlying
infrastructure

High/Low

Table 7.1. Risks for COGNIT Architecture components.

This table presents high level risks for the COGNIT components, with examples of threats.
The risk analysis will be refined in the next iterations of the project, and mitigation
measures aiming to reduce the risks corresponding to the threats will be added.

7.2. Advanced access control

The complexity of FaaS workloads necessitates a very granular access control: who can run
what function, what data can be accessed, when a workload can run and howmuch
resources can be consumed. In order to implement these requirements, the COGNIT
Framework can rely on the Cloud-Manager authorization services that secures resources
such as hosts, virtual machines, networks, services, … using for example access control
lists (ACLs), certificates or tokens. The CyberSecurity Use Case brings additional access
control requirements, with the need for security policies on geographic zones that define
a security level for specific geographic areas. We have identified for example Open Policy
Agent as a solution to implement context-aware security policies in a declarative and
portable way.

7.3. Confidential computing

Edge devices (and in a lesser measure edge nodes) are vulnerable to physical tampering,
an attacker can potentially access them and exploit vulnerabilities that would not be
possible to do remotely. In order to do that, confidential (or trusted) computing
techniques can be applied to reduce this risk. Confidential computing (CC) relies on
“Trusted Execution Environments (TEEs)” which are secure areas in processors that
guarantee that the code and data are protected with respect to confidentiality and
integrity against unauthorised actors. This way, data “in use” is protected while in RAM,
which is an appreciable improvement on protecting the data in transit and at rest.

The original Intel® Software Guard Extensions (SGX) has been deprecated in latest
processors but AMD proposes Secure Encrypted Virtualization - SEV and ARM has
introduced its Confidential Compute Architecture (CCA) in the Armv9-A family. In order to
expose the confidential computing capabilities of the testbed infrastructure to the
COGNIT Framework, some adaptations would need to be performed. The Cloud-Edge
Manager needs to provide in the Provider Catalogue specific filters to identify “CC
capable” servers, and the AI-Enabled Orchestrator should support this “CC capable”
deployment constraint for edge devices and nodes.

Version 1.0 28 April 2023 Page 40 of 61

https://www.openpolicyagent.org/
https://www.openpolicyagent.org/


SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

7.4. Federated Learning

The privacy of data produced by and stored on edge devices is particularly important.
Those devices can for example record personal information of individuals that is covered
by GDPR, or handle information that needs to stay locally and cannot be shared with other
devices or systems. This poses a challenge for machine learning approaches such as
AI-based anomaly detection algorithms that rely on data collected by various devices to
train detection models, and then need to redistribute those models on various devices for
inference. Federated learning is the main state of the art approach to solve this problem.
Federated learning can use local datasets in the edge to train machine learning algorithms
without exchanging the sensitive edge data samples.

This approach provides the added benefit of reducing the volume of exchanged data for
training, which is something particularly interesting in edge contexts where bandwidth
and connectivity can be limited and unreliable. The ecosystem for Federated learning
frameworks and libraries is very dynamic, from plugins of established machine learning
platforms such as TensorFlow Federated to interoperable frameworks like Flower that3 4

focuses on edge use cases. The applicability of federated learning techniques in a FaaS
edge environment will be studied in the cybersecurity Use Case, where anomaly detection
will be performed on vehicles that have confidentiality requirements preventing the
exchange of information for training.

4 https://flower.dev

3 https://www.tensorflow.org/federated

Version 1.0 28 April 2023 Page 41 of 61

https://flower.dev
https://www.tensorflow.org/federated


SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

8. Software Requirements

This section identifies the software requirements and functionality gaps derived from the
sovereignty, sustainability, interoperability and security requirements defined in Section 2,
from the user requirements summarised in Section 3 (and described in full detail in
Deliverable D5.1), and from the definition of the main components of the COGNIT
Architecture, as described in Sections 5, 6, and 7 of this document.

8.1. Device Client

SR1.1 Interface with Provisioning Engine

Description: Implementation of the communication with the Provisioning Engine.
● The Device Client shall be able to ask for the creation of a Serverless Runtime

with specific requirements to the Provisioning Engine.
● The Device Client shall be able to ask for information about a Serverless Runtime

(read) to the Provisioning Engine.
● The Device Client shall be able to ask for deletion of a Serverless Runtime to the

Provisioning Engine.
● The Device Client shall be able to ask for an update of the requirements of a

Serverless Runtime to the Provisioning Engine.

SR1.2 Interface with Serverless Runtime

Description: Implementation of the communication of with the Serverless Runtime
● The Device Client shall be able to upload data from the device to the Serverless

Runtime.
● The Device Client shall be able to upload a function to the Serverless Runtime.
● The Device Client shall be able to request for executing a function to the

Serverless Runtime.
● The Device Client shall be able to request to transfer data from external

resources to the Serverless Runtime.

SR1.3 Programming languages

Description: Support for different programming languages.
● The Device Client shall support the C programming language.
● The Device Client shall support the Python programming language.

SR1.4 Low memory footprint for constrained devices

Description: Low memory footprint for constrained devices.

Version 1.0 28 April 2023 Page 42 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

● The Device Client supporting the C programming language shall have a memory
footprint lower than 500 kB.

● In order to be able to use the Device Client, the Device Application shall be able
to implement an HTTP client with TLS capabilities.

SR1.5 Security

Description: Device Client must be secured.
● All the communications between the Device Client and the Provisioning Engine

shall be encrypted and signed.
● All the communications between the Device Client and the FaaS Runtime shall be

encrypted and signed.
● Device Client shall take into account the latest legislative frameworks, such as the

NIS2 directive, the GDPR, and the CRA.

8.2. Serverless Runtime

SR2.1 Secure and Trusted FaaS Runtimes

Description: Automated building of secure and trusted images (vulnerability scans,
security assessment) related to different flavours of FaaS Runtimes.
● Cloud-Edge Manager shall provide a base FaaS image that exposes a REST API

interface to the device for building and executing functions, provides a secure
channel for the communication with the Device and pushes metrics to the
Cloud-Edge Manager (for monitoring and auditing).

● Cloud-Edge Manager shall provide FaaS images (from the base one) adding
specific libraries (e.g. python libraries for image segmentation) needed for the
execution of functions according to the need of the different Use Cases.

SR2.2 Secure and Trusted DaaS Runtimes

Description: Automated building of secure and trusted images (vulnerability scans,
security assessment) related to different flavours of DaaS Runtimes.
● Cloud-Edge Manager shall provide a DaaS image compliant with the EU GDPR

that exposes a REST API interface to the device for data transfer, provides a
secure channel for the communication with the device, pushes metrics to the
Cloud-Edge Manager (for monitoring and auditing).

● Cloud-Edge Manager shall provide DaaS images (from the base one) adding
specific applications, such as a relational DB (e.g. MariaDB), an object storage
(e.g. MinIO) according to the needs of the different Use Cases.

Version 1.0 28 April 2023 Page 43 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

8.3. Provisioning Engine

SR3.1 Provisioning Interface for the Device to manage Serverless Runtimes

Description: Provide an interface to the Device asking for a Serverless Runtime to
offload functions and data transfer on any resource of the cloud-edge continuum.
● A document with requirements and attributes for the Provisioning Interface shall

be defined and provided as input by the Device.
● Provisioning interface shall implement a REST API to create/read/update/delete

Serverless Runtimes.
● Provisioning interface shall provide means of secure communication with the

Device.
● Provisioning interface shall provide means of secure communication with the

Cloud-Edge Manager and the AI-Enabled Orchestrator.

8.4. Cloud-Edge Manager

SR4.1 Provider Catalogue

Description: Implement a backend to persist information about the available
providers of the cloud-edge infrastructure.
● Provider Catalogue data model shall be persistent.
● Provider Catalogue shall implement an API to manage providers entries.
● Provider Catalogue shall implement calculators that filter providers according to

latency, costs, energy consumption and/or specific characteristics.

SR4.2 Edge Cluster Provisioning

Description: Provision Edge Clusters as a set of software-defined compute, network,
storage on any cloud/edge location available in the Provider Catalogue.
● A provisioning template for Edge Cluster shall be defined and provided as an

input by the AI-Enabled Orchestrator.
● Provisioning engine shall implement an API to provision/update/scale/migrate

Edge Clusters.

SR4.3 Serverless Runtime Deployment

Description: Deploy Serverless Runtime as Virtualized Workloads (e.g. Containers or
VMs/microVMs) on the cloud-edge infrastructure.
● A deployment template specifying the different components of the Serverless

Runtime (i.e. FaaS Runtime & DaaS Runtimes) and their dependencies shall be
defined and provided as an input by the Provisioning Engine.

Version 1.0 28 April 2023 Page 44 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

● Provisioning Engine shall provide an API to deploy/update/scale/migrate
Serverless Runtimes.

SR4.4 Metrics, Monitoring, Auditing

Description: Edge-Clusters monitoring, Serverless Runtimes metrics collection and
continuous security assessment.
● A distributed system shall be used for monitoring Edge Cluster entities

(hypervisor, virtual/overlay networks and datastores).
● A distributed system shall be used for collecting metrics from Serverless

Runtimes deployed across the cloud-edge infrastructure.
● Intrusion and anomaly detection of the different Edge Cluster entities and

Serverless Runtimes shall be available.

SR4.5 Authentication & Authorization

Description: Authentication and authorization mechanisms for accessing cloud-edge
infrastructure resources by the devices for offloading workloads.
● Provisioning engine shall be able to use mechanisms for delegation of

authentication and authorization.
● The device shall be able to use x509 certificates for requests to the Cloud-Edge

Manager through the Provisioning Engine.

8.5. AI-Enabled Orchestrator

SR5.1 Building Learning Model

Description: Implement AI/ML model based on collected metrics from Edge Cluster
entities and serverless runtimes deployed across the distributed cloud-edge
continuum.
● AI-Enabled Orchestrator shall be based on a learning model component that

trains with data having temporal dependency, different distributions, data size,
data correlations, etc. and interacts with the Cloud-Edge Manager and the
Provisioning Engine.

SR5.2 Smart Deployment of Serverless Runtimes

Description: Implement a Smart Workload Orchestrator (SWO) that exposes a REST
API used by the Cloud-Edge Manager for requesting the deployment plans used for
provisioning the Serverless Runtimes.

Version 1.0 28 April 2023 Page 45 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

● The SWO component shall interact with the REST API for offering the decision
obtained from the Learning Model (SR5.1).

● A component for updating the deployment policies of Serverless Runtimes on
demand from the Cloud-Edge Manager that receives requests from Device
Clients shall be implemented.

8.6. Secure and Trusted Execution of Computing Environments

SR6.1 Advanced Access Control

Description: Implement policy-based access control to support security policies on
geographic zones that define a security level for specific areas.
● Cloud-Edge Manager shall install and configure a policy-based access control

service to enforce and manage security policies.
● Cloud-Edge Manager shall define appropriate security policies, based on various

attributes (location, device type, etc.).

SR6.2 Confidential Computing

Description: Enable privacy protection for the FaaS workloads at the hardware level
using Confidential Computing (CC) techniques.
● The resource definition model shall be expanded to allow CC-capable devices and

hosts to be tagged as such.
● CC-capable constraint shall be included in the orchestrator to deploy workloads

requiring CC to appropriate devices and hosts.

SR6.3 Federated Learning

Description: Enhance privacy of FaaS AI workloads that have confidentiality
requirements preventing the exchange of information for training.
● Cloud-Edge Manager shall provide a FL framework, consisting of a server to

manage the FL process and agents integrated in the Serverless Runtime.
● The Orchestrator shall include the FL-capable constraint to deploy workloads

requiring FL to devices and hosts provisioned with FL agents.

Version 1.0 28 April 2023 Page 46 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

9. User to Software Requirements Matching

This section provides the results of the requirement engineering process, which derives
system requirements (functional and non-functional) from functional gaps in order to
implement a system that fulfils both user requirements and sovereignty, sustainability,
interoperability and security requirements. The following tables (Tables 9.1 to 9.6)
summarise the resulting system requirements:

Id Description Source

SR1.1 Secure and trusted Device clients UR0.1
UR0.2
UR0.3
UR0.4
UR0.8
UR1.4
UR1.5
UR2.3
UR2.4
UR3.1
UR3.2
UR3.3
SER0.1
SER0.3

Table 9.1. System requirements for the Device Client.

Id Description Source

SR2.1 Secure and Trusted FaaS Runtimes UR0.1
UR0.5
UR1.4
UR2.1
UR2.3
SUR0.1
IR0.1
SER0.1
SER0.2
SER0.4
SER0.6

SR2.2 Secure and Trusted DaaS Runtimes UR0.2
UR0.3
UR0.4
SOR0.4

Version 1.0 28 April 2023 Page 47 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

IR0.1
SER0.2
SER0.4

Table 9.2. System requirements for the Serverless Runtime.

Id Description Source

SR3.1 Provisioning Interface for the Device to manage
Serverless Runtimes

UR0.5
UR0.8
UR4.1
IR0.3
SER0.1
SER0.2
SER0.5

Table 9.3. System requirements for the Provisioning Engine.

Id Description Source

SR4.1 Provider Catalogue UR0.5
UR4.1

SOR0.1
SUR0.1
IR0.2
IR0.3

SR4.2 Edge Cluster Provisioning UR0.5
UR1.2
SOR0.3
IR0.1
IR0.2
IR0.3
SER0.1
SER0.2

SR4.3 Serverless Runtime Deployment UR0.5
UR1.1
IR0.1
IR0.2
IR0.3
SER0.1
SER0.2
SER0.4

Version 1.0 28 April 2023 Page 48 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

SR4.4 Metrics, Monitoring, Auditing UR1.4
UR2.1
IR0.2
IR0.3

SR4.5 Authentication & Authorization UR0.8
UR1.1
IR0.2
IR0.3

Table 9.4. System requirements for the Cloud-Edge Manager.

Id Description Source

SR5.1 Building Learning Model IR0.2
SUR0.2
SUR0.3
UR1.2
UR2.1
UR2.2

SR5.2 Smart Deployment of Serverless Runtimes UR0.6
UR0.7
UR1.2
UR1.3
UR2.2
UR3.2
UR4.1
UR4.2
UR4.3

Table 9.5. System requirements for the AI-Enabled Orchestrator.

Id Description Source

SR6.1 Advanced Access Control UR0.8
UR1.1
UR4.1
SER0.2
SER0.5

SR6.2 Confidential Computing UR1.1
SER0.1
SER0.2

Version 1.0 28 April 2023 Page 49 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

SER0.4

SR6.3 Federated Learning UR1.1
IR0.2
SER0.2
SER0.4

Table 9.6. System requirements for Secure & Trusted Execution of Computing Envs.

Version 1.0 28 April 2023 Page 50 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

PART III. Verification and Implementation Plan

10. Software Build and Verification

The COGNIT software development model will ensure that components are delivered
securely, rapidly, and with a high-quality level. Figure 10.1 shows a DevSecOps approach
where sample security controls are associated with each phase of the development. The
phases cover the entire lifecycle of the platform, from the planning phase where
requirements are gathered and specifications drafted to the operations and monitoring
phases where the platform is available to end-users. This method relies heavily on
automation to orchestrate the platform life cycle, using techniques such as continuous
integration/deployment (CI/CD), infrastructure as code, and observability.

Figure 10.1. DevSecOps integrates development, operations, and security activities.

10.1. Verification Methodology

The goal of the verification process is to assess that the functional components of the
software platform conforms to the Software Requirements identified in Section 8. This, in
turn, will validate that the COGNIT Framework is feature-complete and able to achieve the
objectives of the Projects’ Use Cases as defined in Deliverable D5.1.

In order to support the agile development adopted in this project, the verification process
is integrated with the software development procedure mentioned before. The
methodology is structured as follows:

Version 1.0 28 April 2023 Page 51 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

● Verification scenario. Describes a simple user story that captures one or more
functional requirements of a software requirement of a component (see Section 9).

● Verification test. An automated testing program that exercises the functional
aspects of the scenario. Each verification test is then integrated into the
certification platform to certificate and test software releases.

10.2. Verification Scenarios

This section presents a list of verification scenarios for verifying the initial set of Software
Requirements defined in Section 8. Each COGNIT platform component is presented in a
separated table that includes a brief description of each scenario.

SW Req. Verification Scenario

SR1.1 VS1.1.1 The Device Client asks the Provisioning Engine for a Serverless
Runtime with certain characteristics and it receives the ID of the
created Serverless Runtime.

VS1.1.2 The Device Client asks the Provisioning Engine for information
about the created Serverless Runtime.

VS1.1.3 The Device Client requests the Provisioning Engine to update
the features of a Serverless Runtime. The Device Client requests again
information about the Serverless Runtime to verify that the Serverless
Runtime has been modified.

VS1.1.4 The Device Client requests the Provisioning Engine to delete a
Serverless Runtime. The Device Client requests information about the
Serverless Runtime to verify that it no longer exists.

SR1.2 VS1.2.3 The Device Client uploads data from the device to the
Serverless Runtime and receives an acknowledgement.

VS1.2.4 The Device Client uploads a function to the Serverless
Runtime and receives an acknowledgement.

VS1.2.5 The Device Client requests the execution of a function to the
Serverless Runtime and receives the result of the execution.

VS1.2.6 The Device Client requests transfer data from external
resources to the Serverless Runtime and receives an
acknowledgement.

SR1.3 VS1.3.1 Test previously described validation scenarios implemented in
C language.

Version 1.0 28 April 2023 Page 52 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

VS1.3.2 Test previously described validation scenarios implemented in
Python language.

SR1.4 VS1.4.1 Test validation scenarios described above on a device with less
than 500kB of RAM.

SR1.5 VS1.5.1 The Device Client asks the Provisioning Engine for a Serverless
Runtime with the data encrypted and signed and the request is
accepted.

VS1.5.2 The Device Client asks the Provisioning Engine for a Serverless
Runtime without the data encrypted or signed and the request is
refused.

Table 10.1. Verification scenarios for Device Client.

SW Req. Verification Scenario

SR2.1 VS2.1.1 Build and instantiate a FaaS Runtime image for Python
language and test the execution of a function using a secure
communication channel

VS2.1.2 Build and instantiate a FaaS Runtime image for C language and
test the execution of a function using a secure communication channel

SR2.2 VS2.2.1 Build and instantiate a DaaS Runtime image for SQL DB (e.g.
MariaDB) and test uploading and copying data using a secure
communication channel

VS2.2.1 Build and instantiate a DaaS Runtime image for Object
Storage (e.g. MinIO) and test uploading and copying data using a
secure communication channel

Table 10.2. Verification scenarios for the Serverless Runtime.

SW Req. Verification Scenario

SR3.1 VS3.1.1 A YAML file with the device requirements is provided to the
Provisioning Engine and it returns the Serverless Runtime ID.

VS3.1.2 Query the Provisioning Engine to return the status of a

Version 1.0 28 April 2023 Page 53 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Serverless Runtime identified by its ID.

VS3.1.3 A YAML file with the updated device requirements is provided
to the Provisioning Engine that updates the associated Serverless
Runtime.

VS3.1.4 Delete a Serverless Runtime providing its ID.

Table 10.3. Verification scenarios for the Provisioning Engine.

SW Req. Verification Scenario

SR4.1 VS4.1.1 Listing the providers belonging to the Provider Catalogue

VS4.1.2 Filtering the providers according to a desired latency
threshold on a geographic area

VS4.1.3 Filtering the providers according to a cost per hour threshold

VS4.1.4 Filtering the providers according to energy consumption per
hour threshold

VS4.1.5 Filtering the providers according to a some specific hardware
characteristics (e.g. GPUs, Trusted Execution Environments)

SR4.2 VS4.2.1 A YAML file containing the information about the provision is
provided to the Cloud-Edge Manager that creates a new Edge Cluster.

VS4.2.2 Query the Cloud-Edge Manager to return the status of an
Edge Cluster identified by its ID

VS4.2.3 Query the Cloud-Edge Manager to scale up/down the number
of hosts of an Edge Cluster identified by its ID

VS4.2.4 Query the Cloud-Edge Manager to delete an Edge Cluster
identified by its ID

SR4.3 VS4.3.1 A YAML file containing the information about the deployment
is provided to the Cloud-Edge Manager that creates a new Serverless
Runtime.

VS4.3.2 Query the Cloud-Edge Manager to return the status of a
Serverless Runtime identified by its ID

Version 1.0 28 April 2023 Page 54 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

VS4.2.3 Query the Cloud-Edge Manager to scale up/down the
resources (CPU, memory and disks) of a Serverless Runtime identified
by its ID

VS4.2.4 Query the Cloud-Edge Manager to update the deployment of
the Serverless Runtime identified by its ID

VS4.2.5 Query the Cloud-Edge Manager to delete a Serverless
Runtime identified by its ID

SR4.4 VS4.4.1 Create an Edge Cluster and deploy a Serverless Runtime and
check the metrics collected for a certain period of time

SR4.5 VS4.5.1 Test the creation of new users and groups.

VS4.5.2 Assign ACLs to designated users and test the creation of new
Edge Clusters and Serverless Runtimes

VS4.5.3 Communicate with Provisioning Engine using x509 certificates.

Table 10.4. Verification scenarios for the Cloud-Edge Manager.

SW Req. Verification Scenario

SR5.1 VS5.1.1 List instances from Devices to Applications to System for
metrics to be collected.

VS5.1.2 Correlate and represent features that ready to take as input to
the Model

VS5.1.3 Feedback-aware performance check when train the model on
represented features

VS5.1.4 Assess the ability in terms of AUROC score for each task (e.g.
scheduling)

SR5.2 VS5.2.1 Users Quality of Service(QoS) /Quality of Experience(QoE) will
check for each Smart workload orchestrator decision for deployment
of serverless runtimes

Table 10.5. Verification scenarios for the AI-Enabled Orchestrator.

SW Req. Verification Scenario

Version 1.0 28 April 2023 Page 55 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

SR6.1 VS6.1.1 Define a security policy that based on geographic zone
attribute

VS6.1.2 Check enforcement of new security policy when edge device
moves closer from one edge node than another

SR6.2 VS6.2.1 Deploy a function on a host that provides confidential
computing capability

VS 6.2.2 Check that the function is executed inside the host trusted
execution environment (TEE)

SR6.3 VS6.3.1 Perform training of the ML algorithm without exchanging local
data

VS6.3.2 Check that the redistributed models for inference do not
contain private data

Table 10.6. Verification scenarios for the Secure & Trusted Execution of Computing Envs.

Version 1.0 28 April 2023 Page 56 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

11. Instantiation of the COGNIT Architecture

This section identifies the gaps and the initial set of technologies that will be used to
instantiate the COGNIT Architecture through the implementation of the Software
Requirements described in Section 8. Based on the analysis in Section 2 with regards to
sovereignty, sustainability, interoperability, and security requirements, the choice of
technologies involved in the implementation plan of the different software requirements
has prioritised the use of European open source alternatives:

SR Description Implementation

SR1.1 Secure and Trusted Device Clients
Engine

New component (HTTPS client plus
certificate management tool).

SR2.1 Secure and Trusted FaaS Runtimes New component developed as an
OpenNebula Virtual Appliance (e.g.
based on openSUSE and KVM).

SR2.2 Secure and Trusted DaaS Runtimes New component developed as an
OpenNebula Virtual Appliance (e.g.
based on openSUSE and KVM), and
incorporating specific applications such
as a relational database (e.g. MariaDB)
or object storage (e.g. MinIO).

SR3.1 Provisioning Interface for the Device
to manage Serverless Runtimes

New component.

SR4.1 Provider Catalogue Expansion of the OpenNebula
OneProvision Edge Catalogue.

SR4.2 Edge Cluster Provisioning Expansion of the OpenNebula
OneProvision component.

SR4.3 Serverless Runtime Deployment Expansion of the OpenNebula OneFlow
and oned components, with Serverless
Runtimes defined as OneFlow Services.

SR4.4 Metrics, Monitoring, Auditing Enhancement of OpenNebula OneGate
component, plus Prometheus/Zabbix
integration, and Edge Cluster
monitoring enhanced with auditing (e.g.
for intrusion and anomaly detection).

SR4.5 Authentication & Authorization Expansion of the OpenNebula
Authentication component and support
to ACLs.

SR5.1 Building Learning Model New component developed using ML/AI
frameworks like PyTorch or TensorFlow.

Version 1.0 28 April 2023 Page 57 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

SR5.2 Smart Deployment of Serverless
Runtimes

Enhancement of the OpenNebula
Scheduler through the integration with
an external module for AI-Enabled
Orchestration.

SR6.1 Advanced Access Control Enhancement of the OpenNebula
support to ACLs.

SR6.2 Confidential Computing Enhancement of the OpenNebula
drivers that expose CC hardware
capabilities.

SR6.3 Federated Learning New component developed using
Federating Learning frameworks such as
Flower.

Table 11.1. Implementation plan per Software Requirement.

Version 1.0 28 April 2023 Page 58 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

12. Prioritisation of Software Requirements

Figure 12.1. COGNIT research and innovation cycles, by Milestone.

As defined in the Project’s proposal, an agile approach towards software R&D has been
adopted, based on shorter, iterative cycles (see Figure 12.1). The research and
development of the framework components will take place in iterative 6-month cycles
which will be conducted in parallel to the validation of the new components and product
versions from the previous cycles against the Use Cases. This will allow the COGNIT team
to obtain quicker feedback, identify unanticipated issues at an earlier stage, and guide the
objectives and definition of the development in each subsequent cycle, incorporating new
emerging technologies and undertaking any required corrective action.

WP Task Expectations for MS2 per Component SR

WP3 T2.3
T3.1

Device Client: First version of distributed FaaS model components:
DSL; Device Runtime with support for specification of FaaS Runtime
context, images, patterns, and attributes by developers.

SR1.1
SR1.2
SR1.3
SR1.4
SR1.5

WP3 T2.3
T3.3
T3.4

Serverless Runtime: FaaS Runtime and Images. Security processes
and controls are automated and integrated into the runtime lifecycle
following a DevSecOps approach.

SR2.1
SR2.2

WP3 T2.3
T3.2

Provisioning Engine: Provision Engine to enable communication
between Device Runtime and FaaS Runtime.

SR3.1

WP4 T2.4
T4.1

Cloud-Edge Manager: First version of a Cloud-Edge Serverless
Manager offering a multi-provider abstraction layer for highly
distributed execution of the FaaS Runtimes, and automatic
deployment and fault tolerance of edge PoPs.

SR4.1
SR4.2
SR4.3
SR4.4
SR4.5

WP4 T2.4
T4.3

AI-Enabled Orchestrator: First version of Workload Orchestration
with baseline functionality to enable AI-based techniques for smart
runtime placement and workload relocation.

SR5.1
SR5.2

Table 12.1.Main tasks involved in implementing the SW requirements towards Milestone 2 (M15).

Version 1.0 28 April 2023 Page 59 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

Table 12.2. Expected contribution of each Software Requirement to meeting the Project’s Milestones and global KPIs.

Version 1.0 28 April 2023 Page 60 of 61



SovereignEdge.Cognit–101092711 D2.1 COGNIT Framework - Architecture - a

13. Conclusions and Next Steps

This report identifies and analyses the main sovereignty, sustainability, interoperability,
and security requirements, as well as the user requirements, derived from the European
context and from the Project’s specific Use Cases. They will guide the research and
development of the project, having played a central role in this initial definition of the
architecture of the COGNIT Framework. From those global and user requirements, a list of
Software Requirements and functional gaps to be implemented by the components of the
COGNIT Framework have been identified, followed by a definition of the methodology and
scenarios required to verify their fulfilment and applicability in the Project’s Use Cases.

The new open source software components and expansions needed to meet the Software
Requirements will be specified and developed within the Work Packages WP3 and WP4,
with these new functionalities being tested, verified, and demonstrated as part of the Use
Cases in their respective associated tasks in WP5.

This first version of the COGNIT Framework Architecture report has been released at the
end of the start phase (M3). It will be updated with incremental releases at the end of each
research and innovation cycle (i.e. M9, M15, M21, M27, M33).

Version 1.0 28 April 2023 Page 61 of 61


